Entropy results for Levinson-type inequalities via Green functions and Hermite interpolating polynomial
被引:0
|
作者:
Muhammad Adeel
论文数: 0引用数: 0
h-index: 0
机构:University of Sargodha,Department of Mathematics
Muhammad Adeel
Khuram Ali Khan
论文数: 0引用数: 0
h-index: 0
机构:University of Sargodha,Department of Mathematics
Khuram Ali Khan
Đilda Pečarić
论文数: 0引用数: 0
h-index: 0
机构:University of Sargodha,Department of Mathematics
Đilda Pečarić
Josip Pečarić
论文数: 0引用数: 0
h-index: 0
机构:University of Sargodha,Department of Mathematics
Josip Pečarić
机构:
[1] University of Sargodha,Department of Mathematics
[2] University of Central Punjab,Department of Mathematics
[3] University North,Department of Media and Communication
[4] RUDN University,undefined
来源:
Aequationes mathematicae
|
2022年
/
96卷
关键词:
Information theory;
Convex functions;
Levinson’s Inequality;
Primary 26D10;
Secondary 26D20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this work, Levinson type inequalities involving two types of data points are proved using Green functions and the Hermite interpolating polynomial for the class of n-convex functions. In seek of applications to information theory some estimates for new functionals are obtained, based on f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathbf {f}$$\end{document}-divergence. Moreover, some inequalities involving Shannon entropies are deduced as well.