首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Integration of Newton Linearization into the Time Discretization of Initial-Boundary-Value Problems
被引:0
|
作者
:
Vovk О.V.
论文数:
0
引用数:
0
h-index:
0
机构:
Franko Lviv National University, Lviv
Franko Lviv National University, Lviv
Vovk О.V.
[
1
]
Shynkarenko H.A.
论文数:
0
引用数:
0
h-index:
0
机构:
Franko Lviv National University, Lviv
Franko Lviv National University, Lviv
Shynkarenko H.A.
[
1
]
机构
:
[1]
Franko Lviv National University, Lviv
来源
:
Journal of Mathematical Sciences
|
2014年
/ 203卷
/ 1期
关键词
:
Cauchy Problem;
Contracting Mapping;
Linear Algebraic Equation;
Discretized Problem;
Nonlinear Parabolic Equation;
D O I
:
10.1007/s10958-014-2091-9
中图分类号
:
学科分类号
:
摘要
:
We construct a one-step recursive scheme for the integration of the Cauchy problem for large systems of ordinary differential equations appearing after the space semidiscretization of the initial-boundary-value problems for systems of nonlinear parabolic equations. The main specific feature of the construction of this scheme is connected with balancing of the orders of the error of piecewise linear approximation with respect to time and the error of Newton linearization. The indicated feature enables us to construct a numerical predictor-corrector-type scheme with weight parameter. With the help of the principle of contracting mappings, we establish sufficient conditions for the correctness of discretized problems. It is shown that, in the case of sufficiently high regularity of the desired solution of the Cauchy problem, the proposed one-step recursive scheme can attain the quadratic rate of convergence of approximations to this solution. We present the results of numerical experiments characterizing the proposed scheme by comparing with the Runge–Kutta schemes of different orders and its application in modeling the reaction of oxidation of carbon monoxide on the platinum surface. © 2014, Springer Science+Business Media New York.
引用
收藏
页码:70 / 86
页数:16
相关论文
共 50 条
[1]
INTEGRABLE INITIAL-BOUNDARY-VALUE PROBLEMS
KHABIBULLIN, IT
论文数:
0
引用数:
0
h-index:
0
KHABIBULLIN, IT
THEORETICAL AND MATHEMATICAL PHYSICS,
1991,
86
(01)
: 28
-
36
[2]
SOLVING INITIAL-BOUNDARY-VALUE CREEP PROBLEMS
Morachkovskii, O. K.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Tech Univ, Kharkov Polytechn Inst, 21 Frunze St, UA-61002 Kharkov 2, Ukraine
Natl Tech Univ, Kharkov Polytechn Inst, 21 Frunze St, UA-61002 Kharkov 2, Ukraine
Morachkovskii, O. K.
Romashov, Yu. V.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Tech Univ, Kharkov Polytechn Inst, 21 Frunze St, UA-61002 Kharkov 2, Ukraine
Natl Tech Univ, Kharkov Polytechn Inst, 21 Frunze St, UA-61002 Kharkov 2, Ukraine
Romashov, Yu. V.
INTERNATIONAL APPLIED MECHANICS,
2009,
45
(10)
: 1061
-
1070
[3]
SOLITON GENERATION FOR INITIAL-BOUNDARY-VALUE PROBLEMS
FOKAS, AS
论文数:
0
引用数:
0
h-index:
0
机构:
CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
FOKAS, AS
ITS, AR
论文数:
0
引用数:
0
h-index:
0
机构:
CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13699 USA
ITS, AR
PHYSICAL REVIEW LETTERS,
1992,
68
(21)
: 3117
-
3120
[4]
On Some Initial-Boundary-Value Problems in Aerohydroelasticity
P. A. Velmisov
论文数:
0
引用数:
0
h-index:
0
机构:
Ulyanovsk State Technical University,
Ulyanovsk State Technical University,
P. A. Velmisov
Yu. V. Pokladova
论文数:
0
引用数:
0
h-index:
0
机构:
Ulyanovsk State Technical University,
Ulyanovsk State Technical University,
Yu. V. Pokladova
U. J. Mizher
论文数:
0
引用数:
0
h-index:
0
机构:
Ulyanovsk State Technical University,
Ulyanovsk State Technical University,
U. J. Mizher
Journal of Mathematical Sciences,
2025,
288
(1)
: 17
-
31
[5]
SOLUTION OF INITIAL-BOUNDARY-VALUE PROBLEMS OF ELECTROELASTICITY REVISITED
Shul'ga, N. A.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, UA-03057 Kiev, Ukraine
Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, UA-03057 Kiev, Ukraine
Shul'ga, N. A.
Grigor'eva, L. O.
论文数:
0
引用数:
0
h-index:
0
机构:
Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, UA-03057 Kiev, Ukraine
Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, UA-03057 Kiev, Ukraine
Grigor'eva, L. O.
INTERNATIONAL APPLIED MECHANICS,
2008,
44
(12)
: 1371
-
1377
[6]
INITIAL-BOUNDARY-VALUE PROBLEMS IN THEORY OF MICROPOLAR FLUIDS
SAVA, VA
论文数:
0
引用数:
0
h-index:
0
SAVA, VA
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK,
1978,
58
(11):
: 511
-
518
[7]
Generic types and transitions in hyperbolic initial-boundary-value problems
Benzoni-Gavage, S
论文数:
0
引用数:
0
h-index:
0
机构:
ENS Lyon, CNRS, UMPA, UMR 5669, F-69364 Lyon 07, France
Benzoni-Gavage, S
Rousset, F
论文数:
0
引用数:
0
h-index:
0
机构:
ENS Lyon, CNRS, UMPA, UMR 5669, F-69364 Lyon 07, France
Rousset, F
Serre, D
论文数:
0
引用数:
0
h-index:
0
机构:
ENS Lyon, CNRS, UMPA, UMR 5669, F-69364 Lyon 07, France
Serre, D
Zumbrun, K
论文数:
0
引用数:
0
h-index:
0
机构:
ENS Lyon, CNRS, UMPA, UMR 5669, F-69364 Lyon 07, France
Zumbrun, K
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS,
2002,
132
: 1073
-
1104
[8]
Nonlocal Initial-Boundary-Value Problems for a Degenerate Hyperbolic Equation
Sabitova, Yu. K.
论文数:
0
引用数:
0
h-index:
0
机构:
Sterlitamak State Pedag Acad, Pr Lenina 49, Sterlitamak 453103, Russia
Sterlitamak State Pedag Acad, Pr Lenina 49, Sterlitamak 453103, Russia
Sabitova, Yu. K.
RUSSIAN MATHEMATICS,
2009,
53
(12)
: 41
-
49
[9]
Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation
Yu. K. Sabitova
论文数:
0
引用数:
0
h-index:
0
机构:
Sterlitamak State Pedagogical Academy,
Yu. K. Sabitova
Russian Mathematics,
2009,
53
(12)
: 41
-
49
[10]
The analysis of initial-boundary-value problems using Hermite interpolation
Grundy, RE
论文数:
0
引用数:
0
h-index:
0
机构:
Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
Grundy, RE
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,
2003,
154
(01)
: 63
-
95
←
1
2
3
4
5
→