Impact of High-temperature and Interface Traps on Performance of a Junctionless Tunnel FET

被引:0
作者
Sujay Routh
Deepjyoti Deb
Ratul Kumar Baruah
Rupam Goswami
机构
[1] Tezpur University,Department of ECE
来源
Silicon | 2023年 / 15卷
关键词
Analog applications; High-temperature; Junctionless Tunnel FET (JL-TFET); Non-Local Band to band tunneling (BTBT); p-i-n SOI-TFET; Gate-separation length;
D O I
暂无
中图分类号
学科分类号
摘要
Junctionless transistor (JLT) which does not have a PN junction in the source-channel-drain path, is reported to have a lower OFF-state current and therefore is more scalable to lower channel lengths compared to a conventional MOSFET, moreover a JLT also offers easy fabrication steps. Tunnel FET (TFET) provides a theoretically possible limit of subthreshold swing (SS) and has applicability for low-power electronics. Combining junctionless technology in a TFET (JL-TFET), the possible application of the device is looked into, for further low-power and high-temperature applications. This work analyses the performances of a JL-TFET for high-temperature applications and the same is compared with a conventional p-i-n silicon-on-insulator tunnel field effect transistor (p-i-n SOI-TFET). Using calibrated technology computer-aided design (TCAD) simulations, analog circuit performance parameters like ON-state to OFF-state current ratio (ION/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{I}}}_{{\varvec{O}}{\varvec{N}}}/{{\varvec{I}}}_{{\varvec{O}}{\varvec{F}}{\varvec{F}}}$$\end{document}), subthreshold slope (SS), transconductance (Gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{G}}}_{{\varvec{m}}}$$\end{document}), gate-to-source capacitance (CGS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{C}}}_{{\varvec{G}}{\varvec{S}}}$$\end{document}), gate-to-drain capacitance (CGD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{C}}}_{{\varvec{G}}{\varvec{D}}}$$\end{document}), and cut-off frequency (fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{f}}}_{{\varvec{T}}}$$\end{document}) etc. are analyzed for temperatures till 500 K. ON-state current of JL-TFET increases in the order of hundreds of μA/μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{\mu}}{\varvec{A}}/{\varvec{\mu}}{\varvec{m}}$$\end{document} at high temperatures, whereas p-i-n SOI-TFET shows lesser temperature sensitivity. JL-FET is more applicable to low-power applications, whereas a p-i-n SOI-TFET has more suitability for high-speed applications. Dual material technology adoption helps in improving the ambipolar behavior of the device. Analysis of interface traps is carried out in this architecture where the concentration, energy positions, and energy width of the distribution of acceptor-like and donor-like traps at the interface of semiconductor and oxide are also evaluated.
引用
收藏
页码:2703 / 2714
页数:11
相关论文
共 192 条
[1]  
Colinge JP(2010)Nanowire transistors without junctions Nat Nanotechnol 5 225-322
[2]  
Lee CW(2011)Junctionless nanowire transistor (JNT): Properties and design guidelines Solid State Electron 65 33-37
[3]  
Afzalian A(2015)Impact of TFET unidirectionality and ambipolarity on the performance of 6T SRAM cells IEEE J Electron Devices Soc 3 223-232
[4]  
Akhavan ND(2021)Junctionless silicon nanotube TFET for improved DC and radio frequency performance Silicon 13 167-178
[5]  
Yan R(2018)Controlling the ambipolarity and improvement of RF performance using Gaussian Drain Doped TFET Int J Electron 105 806-816
[6]  
Ferain I(2008)The tunnel source (PNPN) n-MOSFET: a novel high-performance transistor IEEE Trans Electrons Devices 55 1013-1019
[7]  
Razavi P(2011)Novel attributes of a dual material gate nanoscale tunnel field-effect transistor IEEE Trans Electrons Devices 58 404-410
[8]  
O’Neill B(2016)Assessment of InAs/AlGaSb tunnel-FET virtual technology platform for low-power digital circuits IEEE Trans Electron Devices 63 2749-2756
[9]  
Blake A(2011)Impact of a spacer dielectric and a gate overlap/underlap on the device performance of a tunnel fieldeffect transistor IEEE Trans Electron Devices 58 677-683
[10]  
White M(2010)Hetero-gate-dielectric tunneling fieldeffect transistors IEEE Trans Electron Devices 57 2317-2319