On the simplicity of homeomorphism groups of a tilable lamination

被引:0
作者
José Aliste-Prieto
Samuel Petite
机构
[1] Universidad Andres Bello,Departamento de Matematicas
[2] Université de Picardie Jules Verne,Laboratoire Amiénois de Mathématique Fondamentale et Appliquée,CNRS
来源
Monatshefte für Mathematik | 2016年 / 181卷
关键词
Simple groups; Homeomorphism groups; Tiling spaces; Tilable laminations; 20E32; 57S05; 37B50; 37A20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the identity component of the group of homeomorphisms that preserve all leaves of a Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb R}^{d}$$\end{document}-tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain similar results for homeomorphisms preserving the vertical structure.
引用
收藏
页码:285 / 300
页数:15
相关论文
共 13 条
  • [1] Bellissard J(2006)Spaces of tilings, finite telescopic approximations and gap-labeling Commun. Math. Phys. 261 1-41
  • [2] Benedetti R(1971)Deformations of spaces of imbeddings Ann. Math. (2) 93 63-88
  • [3] Gambaudo J-M(1970)The simplicity of certain group of homeomorphisms Comp. Math. 22 165-173
  • [4] Edwards R(1960)On the group of all homeomorphisms of a manifold Trans. Am. Math. Soc. 97 193-212
  • [5] Kirby RC(2012)Commutator length of leaf preserving diffeomorphisms Pub. Res. Inst. Math. Sci. 48 615-622
  • [6] Epstein DBA(1973)Sur le groupe des difféomorphismes du tore Ann. Inst. Fourier (Grenoble) 23 75-86
  • [7] Fisher GM(2003)Pattern-equivariant functions and cohomology J. Phys. A 36 5765-5772
  • [8] Fukui K(2010)Topological friction in aperiodic minimal Fund. Math. 207 175-178
  • [9] Herman MR(1995)-actions Monast. Math. 120 289-305
  • [10] Kellendonk J(1974)The identity component of the leaf preserving diffeomorphism group is perfect Bull. Am. Math. Soc. 80 304-307