The p-Daugavet property for function spaces

被引:0
作者
Enrique A. Sánchez Pérez
Dirk Werner
机构
[1] Universidad Politécnica de Valencia,Instituto Universitario de Matemática Pura y Aplicada
[2] Freie Universität Berlin,Department of Mathematics
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
Primary 46B04; Secondary 46B25; Daugavet property; -space;
D O I
暂无
中图分类号
学科分类号
摘要
A natural extension of the Daugavet property for p-convex Banach function spaces and related classes is analysed. As an application, we extend the arguments given in the setting of the Daugavet property to show that no reflexive space falls into this class.
引用
收藏
相关论文
共 17 条
  • [1] Abramovich Yu.A.(1991)The Daugavet equation in uniformly convex Banach spaces J. Funct. Anal. 97 215-230
  • [2] Aliprantis C.D.(2005)Narrow operators and the Daugavet property for ultraproducts Positivity 9 45-62
  • [3] Burkinshaw O.(2004)Daugavet equation in Kharkov National University Vestnik 645 22-29
  • [4] Bilik D.(2008) as a limiting case of the Benyamini-Lin J. Funct. Anal. 254 2294-2302
  • [5] Boyko K.(1996) theorem Quaestiones Math. 19 225-235
  • [6] Kadets V.M.(2000)Banach spaces with the Daugavet property, and the centralizer Amer. Math. Soc. 352 855-873
  • [7] Becerra Guerrero J.(2003)Some remarks concerning the Daugavet equation Taiwan. J. Math. 7 631-640
  • [8] Rodríguez-Palacios A.(2004)Banach spaces with the Daugavet property. Trans J. Math Anal. Appl. 294 158-180
  • [9] Kadets V.M.(2005)The Daugavetian index of a Banach space Positivity 9 607-623
  • [10] Kadets V.M.(2011)An alternative Daugavet property Banach J. Math. Anal. 5 167-180