Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane

被引:0
作者
Xianyong Huang
Junfei Cao
Bing He
Bicheng Yang
机构
[1] Guangdong University of Education,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2015卷
关键词
parameter; Hilbert-type inequality; Hardy-type inequality; kernel; operator expression;
D O I
暂无
中图分类号
学科分类号
摘要
By introducing a mixed kernel function and the proper parameters, a new Hilbert-type integral inequality with a best constant factor in the whole plane is derived. As an application, the operator expressions, reverse inequalities, and Hardy-type inequalities are considered.
引用
收藏
相关论文
共 27 条
[1]  
Yang BC(2012)A more accurate half-discrete Hilbert-type inequality with a non-homogeneous kernel J. Inequal. Appl. 2012 1-13
[2]  
Liu XD(2011)A half-discrete Hilbert-type inequality with a homogeneous kernel and an extension J. Inequal. Appl. 2011 883-895
[3]  
Yang BC(2007)On inequalities of Hilbert’s type Bull. Aust. Math. Soc. 76 525-536
[4]  
Chen Q(2013)A multiple Hilbert-type integral inequality with a non-homogeneous kernel J. Inequal. Appl. 2013 786-793
[5]  
Li YJ(2012)Multidimensional Hilbert-type inequality on the weighted Orlicz spaces Mediterr. J. Math. 9 1085-1090
[6]  
He B(2009)Hardy-Hilbert’s inequalities with a general homogeneous kernel Math. Inequal. Appl. 12 519-524
[7]  
Huang QL(2009)Hilbert-type inequalities with a product-type homogeneous kernel and Schur polynomials J. Math. Anal. Appl. 359 undefined-undefined
[8]  
Yang BC(2014)A Hilbert-type integral inequality with multiparameters and a nonhomogeneous kernel Abstr. Appl. Anal. 2014 undefined-undefined
[9]  
Krnić M(2008)A new Hilbert-type integral inequality with some parameters J. Jilin Univ. Sci. Ed. 46 undefined-undefined
[10]  
Perić I(2014)On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane J. Inequal. Appl. 2010 undefined-undefined