We present numrical results on the velocity autocorrelation function (VACF)C(t)=<ν(t)·ν(0)> for the periodic Lorentz gas on a two-dimensional triangular lattice as a function of the radiusR of the hard disk scatterers on the lattice. Our results for the unbounded horizon case\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(0< R< \sqrt 3 /4)$$
\end{document} confirm 1/t decay of the VACF for long times (out to 100 times the mean free time between collisions) and provide strong support for the conjecture by Friedman and Martin that the 1/t decay is due to long free paths along which a moving particle does not scatter up to timet. Even after new sets of long free paths become available forR<1/4, we continue to find good agreement between numerical results and an analytically estimated 1/t decay. For the bounded horizon case\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$(\sqrt 3 /4 \leqslant R \leqslant 0.5)$$
\end{document}, our numerical VACFs decay exponentially, although it is difficult to discriminate among pure exponential decay, exponential decay with prefactor, and stretched exponential decay.