Editorial special issue: “Dynamics and Control of Fractional Order Systems” International Journal of Dynamics and Control

被引:0
作者
Muresan C.I. [1 ]
Tenreiro Machado J.A. [2 ]
Ortigueira M.D. [3 ]
机构
[1] Department of Automation, Technical University of Cluj-Napoca, Memorandumului Street, No 28, Cluj-Napoca
[2] Department of Electrical Engineering, Institute of Engineering, Polytechnic of Porto, Rua Dr. Antonio Bernardino de Almeida, 431, Porto
[3] Faculdade de Ciencias e Tecnologia da UNL, UNINOVA and DEE, Campus da FCT, Quinta da Torre, Caparica
关键词
Fractional Order; Fractional Calculus; Fractional Order System; Permanent Magnet Synchronous Motor; Prony Series;
D O I
10.1007/s40435-016-0251-0
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:1 / 3
页数:2
相关论文
共 22 条
  • [1] Muthukumar P., Balasubramaniam P., Ratnavelu K., Sliding mode control design for synchronization of fractional order chaotic systems and its application to a new cryptosystem. Int J Dyn Control, doi:10.1007/s40435-015-0169-y, (2016)
  • [2] Mohadeszadeh M., Delavari H., Synchronization of fractional-order hyper-chaotic systems based on a new adaptive sliding mode control. Int J Dyn Control, doi:10.1007/s40435-015-0177-y, (2016)
  • [3] Mohadeszadeh M., Delavari H., Synchronization of uncertain fractional-order hyper-chaotic systems via a novel adaptive interval type-2 fuzzy active sliding mode controller. Int J Dyn Control, doi:10.1007/s40435-015-0207-9, (2016)
  • [4] Dadvar H., A novel fractional adaptive active sliding mode controller for synchronization of non-identical chaotic systems with disturbance and uncertainty. Int J Dyn Control, doi:10.1007/s40435-015-0159-0, (2016)
  • [5] Tabatabaei M., Salehi R., Fractional order PID controller design based on Laguerre orthogonal functions. Int J Dyn Control, doi:10.1007/s40435-016-0248-8, (2016)
  • [6] Thakar U., Joshi, 5, (2016)
  • [7] Bongulwar M.R., Patre B.M., Stability regions of closed loop system with one non-integer plus time delay plant by fractional order PID controller. Int J Dyn Control, doi:10.1007/s40435-015-0191-0, (2016)
  • [8] Yadav V.K., Agrawal S.K., Srivastava M., Das S., Phase and anti-phase synchronizations of fractional order hyperchaotic systems with uncertainties and external disturbances using nonlinear active control method. Int J Dyn Control, doi:10.1007/s40435-015-0186-x, (2016)
  • [9] Patil M.D., Nataraj P.S.V., Vyawahare V.A., Design of robust fractional-order controllers and prefilters for multivariable system using interval constraint satisfaction technique. Int J Dyn Control, doi:10.1007/s40435-015-0187-9, (2016)
  • [10] Tan N., Atherton D.P., Yuce A., Computing step and impulse responses of closed loop fractional order time delay control systems using frequency response data. Int J Dyn Control, doi:10.1007/s40435-016-0237-y, (2016)