A new extension theorem for 3-weight modulo q linear codes over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{F}_q}$$\end{document}

被引:0
作者
E. J. Cheon
T. Maruta
机构
[1] Gyeongsang National University,Department of Mathematics and RINS
[2] Osaka Prefecture University,Department of Mathematics and Information Sciences
关键词
Extension theorem; Linear code; 3-weight; Projective space; 94B65; 94B05; 51E20; 05B25;
D O I
10.1007/s10623-009-9275-1
中图分类号
学科分类号
摘要
We prove that every [n, k, d]q code with q ≥ 4, k ≥ 3, whose weights are congruent to 0, −1 or −2 modulo q and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d \equiv -1 \pmod{q}}$$\end{document} is extendable unless its diversity is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\left({q \choose 2}q^{k-3}+\theta_{k-3}, {q\choose 2}q^{k-3}\right)}$$\end{document} for odd q, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta_j = (q^{j+1}-1)/(q-1)}$$\end{document} .
引用
收藏
页码:171 / 183
页数:12
相关论文
共 19 条
[1]  
Daskalov R.(1995)The nonexistence of some 5-dimensional quaternary linear codes IEEE Trans. Inform. Theory 41 581-583
[2]  
Metodieva E.(1993)A characterization of some [ Discrete Math. 116 229-268
[3]  
Hamada N.(1999), Des. Codes Cryptogr. 17 151-157
[4]  
Hill R.(2009), Discrete Math. 309 412-417
[5]  
Kohnert A.(2006); Probl. Inf. Transm. 42 319-329
[6]  
Landjev I.(2001)]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry Finite Fields Appl. 7 350-354
[7]  
Rousseva A.(2003)An extension theorem for linear codes Discrete Math. 266 377-385
[8]  
Maruta T.(2004)( Finite Fields Appl. 10 674-685
[9]  
Maruta T.(2005), Des. Codes Cryptogr. 35 175-190
[10]  
Maruta T.(2007))-extension of linear codes Finite Fields Appl. 13 259-280