The numerical solution of fractional differential equations: Speed versus accuracy

被引:0
作者
Neville J. Ford
A. Charles Simpson
机构
[1] Chester College,Department of Mathematics
来源
Numerical Algorithms | 2001年 / 26卷
关键词
fractional differential equations; numerical methods; fixed memory principle;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the development of efficient algorithms for the approximate solution of fractional differential equations of the form Dαy(t)=f(t,y(t)), α∈R+−N.(†)
引用
收藏
页码:333 / 346
页数:13
相关论文
共 10 条
[1]  
Baker C.T.H.(1987)FFT techniques in the numerical solution of convolution equations J. Comput. Appl. Math. 20 5-24
[2]  
Derakhshan M.S.(1967)Linear models of dissipation whose Q is almost frequency independent II Geophys. J. Roy. Astronom. Soc. 13 529-539
[3]  
Caputo M.(1997)An algorithm for the numerical solution of differential equations of fractional order Elect. Trans. Numer. Anal. 5 1-1
[4]  
Diethelm K.(1997)Numerical approximation of finite-part integrals with generalised compound quadrature formulae IMA J. Numer. Anal. 17 479-493
[5]  
Diethelm K.(1997)Numerical solution of fractional order differential equations by extropolation Numer. Algorithms 16 231-253
[6]  
Diethelm K.(1986)Discretized fractional calculus SIAM J. Math. Anal. 17 704-719
[7]  
Walz G.(1985)Fractional linear multistep methods for Abel–Volterra integral equations of the second kind Math. Comp. 45 463-469
[8]  
Lubich C.(1988)Convolution quadrature and discretized operational calculus. II Numer. Math. 52 413-425
[9]  
Lubich C.(undefined)undefined undefined undefined undefined-undefined
[10]  
Lubich C.(undefined)undefined undefined undefined undefined-undefined