The multidimensional ergodic Szemerédi theorem of Furstenberg and Katznelson, which deals with commuting transformations, is extended to the case where the transformations generate a nilpotent group: ¶Theorem. Let\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$(X, \frak B, \mu$\end{document}) be a measure space with\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \mu (X) \le \infty $\end{document}and let\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$T_1, \dots, T_k$\end{document}be measure preserving transformations of X generating a nilpotent group. Then for any\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$A \in \frak B$\end{document}with\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$\mu (A) \ge 0,$\end{document}¶¶\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \liminf \limits_{N \rightarrow \infty} {1\over N} \sum \limits^{N-1} \limits_{n=0}\mu (T_1^{-n} A \cap \cdots \cap T_k^{-n} A) \ge 0 $\end{document}.¶¶ Our main result also generalizes the polynomial Szemerédi Theorem in [BL1]. In the course of the proof we describe a relatively simple form to which any unitary action of a finitely generated nilpotent group on a Hilbert space and any measure preserving action of a finitely generated nilpotent group on a probability space can be reduced.