Inhibition of nitrate uptake and assimilation in wheat seedlings grown under elevated CO2

被引:20
|
作者
Lekshmy S. [1 ]
Jain V. [1 ,2 ]
Khetarpal S. [1 ]
Pandey R. [1 ]
机构
[1] Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi
[2] KAB II, Indian Council of Agriculture Research, New Delhi
来源
Indian Journal of Plant Physiology | 2013年 / 18卷 / 1期
关键词
Nitrate reductase activity; Nitrate uptake; Triticum aestivum;
D O I
10.1007/s40502-013-0010-6
中图分类号
学科分类号
摘要
Wheat (Triticum aestivum L.) cv PBW 343 was grown in Hoagland solution devoid of nitrogen (-N) under two CO2 levels viz. ambient (380 μL L-1, AC) and elevated (600 ± 50 μL L-1, EC) for 20 days in growth chambers. The rate of uptake, assimilation and accumulation of nitrate was compared. At lows nitrate concentration up to 0.5 mM, rate of nitrate uptake was higher in EC grown seedlings as compared to AC. Under non-limiting supply of external nitrate, the rate of uptake declined in EC grown seedlings. Nitrate reductase (NR) activity increased in EC grown seedlings at low external concentrations of nitrate. However, AC grown plants showed higher NR activity, but at very high concentrations of nitrate. EC grown plants showed low level of accumulation of nitrate in shoots under limited nitrate availability, indicating lower influx towards storage pool and more availability of nitrate in metabolic pool. Increasing nitrogen (N) fertilization therefore may not compensate for slower NO3}- assimilation rates under EC, as uptake and assimilation both decline under nitrate sufficient conditions. Effective management practices and changes in the pattern of fertigation may be required in response to rising atmospheric CO2 levels for wheat production. © 2013 Indian Society for Plant Physiology.
引用
收藏
页码:23 / 29
页数:6
相关论文
共 50 条
  • [32] Effects of elevated CO2 concentration on growth and water usage of tomato seedlings under different ammonium/nitrate ratios
    Li Juan
    Zhou Jian-min
    Duan Zeng-qiang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2007, 19 (09) : 1100 - 1107
  • [33] Silencing of OsCV (chloroplast vesiculation) maintained photorespiration and N assimilation in rice plants grown under elevated CO2
    Umnajkitikorn, Kamolchanok
    Sade, Nir
    Wilhelmi, Maria del Mar Rubio
    Gilbert, Matthew E.
    Blumwald, Eduardo
    PLANT CELL AND ENVIRONMENT, 2020, 43 (04): : 920 - 933
  • [34] THE RESPONSE OF TEMPERATE TREE SEEDLINGS GROWN IN ELEVATED CO2 TO EXTREME TEMPERATURE EVENTS
    BASSOW, SL
    MCCONNAUGHAY, KDM
    BAZZAZ, FA
    ECOLOGICAL APPLICATIONS, 1994, 4 (03) : 593 - 603
  • [35] Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2
    Holtum, JAM
    Winter, K
    PLANTA, 2003, 218 (01) : 152 - 158
  • [36] Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2
    Joseph A. M. Holtum
    Klaus Winter
    Planta, 2003, 218 : 152 - 158
  • [37] Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere
    Marhan, Sven
    Derain, Dmitry
    Erbs, Martin
    Kuzyakov, Yakov
    Fangmeier, Andreas
    Kandeler, Ellen
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2008, 123 (1-3) : 63 - 68
  • [38] Interactive effects of elevated CO2, temperature and nitrogen on photosynthesis of wheat grown under temperature gradient tunnels
    Martínez-Carrasco, R
    Pérez, P
    Morcuende, R
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2005, 54 (01) : 49 - 59
  • [39] Effect of ectomycorrhizal infection on growth and photosynthetic characteristics of Pinus densiflora seedlings grown under elevated CO2 concentrations
    Choi, DS
    Quoreshi, AM
    Maruyama, Y
    Jin, HO
    Koike, T
    PHOTOSYNTHETICA, 2005, 43 (02) : 223 - 229
  • [40] Growth, Development and Reproduction of Meadow Moth Loxostege sticticalis Fed on Pea Seedlings Grown Under Elevated CO2
    Zhou, Jingxian
    Xu, Zun
    Yu, Zuoheng
    Mai, Huirong
    Huang, Jiacheng
    Chang, Xiaoli
    Chen, Fajun
    AGRONOMY-BASEL, 2025, 15 (01):