Commutators of multilinear Calderón–Zygmund operators with kernels of Dini’s type on generalized weighted Morrey spaces and applications

被引:0
作者
V. S. Guliyev
机构
[1] Baku State University,Institute of Applied Mathematics
[2] Institute of Mathematics and Mechanics of NAS of Azerbaijan,undefined
[3] Peoples Friendship University of Russia (RUDN University),undefined
来源
Positivity | 2023年 / 27卷
关键词
Multilinear Calderón–Zygmund operator; Generalized weighted Morrey spaces; Bilinear pseudo-differential operator; Paraproduct; Commutator; Multiple weight; BMO; 42B20; 42B25; 47G30; 35S05; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a multilinear Calderón–Zygmund operator of type ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} with ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} being nondecreasing and satisfying a kind of Dini’s type condition and TΠb→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Pi \vec {b}}$$\end{document} be the iterated commutators of the operator T with BMOm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$BMO^m$$\end{document} functions. The generalized weighted Morrey strong and weak L(logL)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(\log L)$$\end{document}-type endpoint estimates for T and TΠb→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\Pi \vec {b}}$$\end{document} with multiple weights are established. As applications multiple weighted Morrey estimates for iterated commutators of bilinear pseudo-differential operators and paraproducts with mild regularity are given.
引用
收藏
相关论文
共 65 条
[1]  
Ahmadli AA(2021)Multilinear commutators of parabolic Calderón–Zygmund operators on generalized weighted variable parabolic Morrey spaces Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Technol. Math. Sci. 41 3-16
[2]  
Akbulut A(1975)On commutators of singular integrals and bilinear singular integrals Trans. Am. Math. Soc. 212 315-331
[3]  
Isayev FA(1978)Commutateurs d’integrales singulieres et operateurs multilineaires Ann. Inst. Fourier (Grenoble) 28 177-202
[4]  
Serbetci A(2010)Multilinear operators with non-smooth kernels and commutators of singular integrals Trans. Am. Math. Soc. 362 2089-2113
[5]  
Coifman RR(2021)Multilinear commutators of Calderón–Zygmund operator on generalized variable exponent Morrey spaces Positivity 25 1551-1567
[6]  
Meyer Y(2022)Oscillatory integrals with variable Calderón–Zygmund kernel on generalized weighted Morrey spaces Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Technol. Math. Sci. 42 99-110
[7]  
Coifman RR(2002)Multilinear Calderón–Zygmund theory Adv. Math. 165 124-164
[8]  
Meyer Y(2002)Maximal operator and weighted norm inequalities for multilinear singular integrals Indiana Univ. Math. J. 51 1261-1276
[9]  
Duong XT(2009)Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces J. Inequal. Appl. 2009 33-61
[10]  
Grafakos L(2012)Generalized weighted Morrey spaces and higher order commutators of sublinear operators Eurasian Math. J. 3 104-132