A self-organizing model of place cells with grid-structured receptive fields

被引:1
作者
Oshiro N. [1 ]
Kurata K. [1 ]
Yamamoto T. [1 ]
机构
[1] Department of Mechanical Engineering, Faculty of Engineering, University of the Ryukyus, Nishihara, Okinawa 903-0213
关键词
Anti-Hebbian synapse; Grid cell; Hierarchical structure; Self-organization; VQ;
D O I
10.1007/s10015-006-0398-4
中图分类号
学科分类号
摘要
In this article, we propose a new information separation model consisting of two vector quantization (VQ) layers, the superior layer and the inferior. The inferior VQ layer receives inhibitory input from the superior via anti-Hebbian synapses, which forces the winner on the inferior layer to be distributed independently of that on the superior. Supplied with input vectors carrying 2D positional information, the inferior layer can self-organize place-cell-like units with a grid-structured receptive field which shows a remarkable resemblance to that of grid cells" found recently in the entorhinal cortex of a rat. © ISAROB 2007."
引用
收藏
页码:48 / 51
页数:3
相关论文
共 12 条
[1]  
Kohonen T., Self-organized formation of topologically correct feature map, Biol Cybern, 43, pp. 59-69, (1982)
[2]  
Kohonen T., Self-organizing Maps, (1994)
[3]  
Erwin E., Obermayer K., Schulten K., Models of orientation and ocular dominance columns in the visual cortex: A critical comparison, Neural Comput, 7, pp. 425-468, (1995)
[4]  
Shouno H., Kurata K., Formation of a direction map using Kohonen's self-organization map by projection learning, Biol Cybern, 85, pp. 241-246, (2001)
[5]  
Kurata K., Oshiro N., Separating visual information into position and direction by a SOM, Artif Life Robotics, 8, 1, pp. 5-8, (2004)
[6]  
Oshiro N., Kurata K., Separating visual information into position and direction by two inhibitory-connected SOMs, Artif Life Robotics, 9, 2, pp. 86-89, (2005)
[7]  
Hafting T., Fyhn M., Molden S., Microstructure of a spatial map in the entorhinal cortex, Nature, 436, pp. 801-806, (2005)
[8]  
Gersho A., Asymptotically optimal block quantization, IEEE Trans Inf Theory IT, 25, 4, pp. 373-380, (1979)
[9]  
Linde Y., Buzo A., Gray R., An algorithm for vector quantizer design, IEEE Trans Commun COM-28, pp. 84-95, (1980)
[10]  
Gray R., Vector quantization, IEEE ASSP Magazine, 99, pp. 4-29, (1984)