Spectral Analysis for a Discrete Metastable System Driven by Lévy Flights

被引:0
|
作者
Toralf Burghoff
Ilya Pavlyukevich
机构
[1] University of Lübeck,Institute of Medical Biometry and Statistics
[2] Friedrich Schiller University Jena,Institute for Mathematics
来源
Journal of Statistical Physics | 2015年 / 161卷
关键词
Spectrum; Spectral gap; Non self-adjoint operator; Markov chain; Fractional Laplacian; Semiclassical limit;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a finite state time discrete Markov chain that mimic the behaviour of solutions of the stochastic differential equation Xtε(x)=x-∫0tU′(Xsε)ds+εLt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X_{t}^{\varepsilon }(x)=x-\int _0^t U^{\prime }(X_{s}^{\varepsilon })\, \mathrm {d}s+\varepsilon L_{t}, \end{aligned}$$\end{document}where U is a multi-well potential with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} local minima and L=(Lt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=(L_t)_{t\ge 0}$$\end{document} is a symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Lévy process (Lévy flights process). We investigate the spectrum of the generator of this Markov chain in the limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document} and localize the top n eigenvalues λ1ε,…,λnε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^\varepsilon _1,\ldots ,\lambda ^\varepsilon _n$$\end{document}. These eigenvalues turn out to be of the same algebraic order O(εα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O(\varepsilon ^\alpha )$$\end{document} and are well separated from the rest of the spectrum by a spectral gap. We also determine the limits limε→0ε-αλiε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{\varepsilon \rightarrow 0}\varepsilon ^{-\alpha } \lambda ^\varepsilon _i$$\end{document}, 1≤i≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le n$$\end{document}, and show that the corresponding eigenvectors are approximately constant over the domains which correspond to the potential wells of U.
引用
收藏
页码:171 / 196
页数:25
相关论文
共 23 条
  • [21] Exponential stability and spectral analysis of the inverted pendulum system under two delayed position feedbacks
    Zhao, Dong-Xia
    Wang, Jun-Min
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (02) : 269 - 295
  • [22] Performance analysis of a novel unassisted photoelectrochemical water splitting hybrid system based on spectral beam splitting
    Wang, Baoyuan
    Yang, Suyi
    Zhang, Tuo
    Liu, Yukai
    Yang, Sheng
    Li, Luning
    Wang, Weiding
    Su, Jinzhan
    FRONTIERS IN ENERGY, 2025,
  • [23] Spectral Analysis of Methylene Blue-Mediated Photodynamic Inactivation of Bacteria Using a 635-nm Diode Laser System
    Calin, Mihaela Antonina
    Calin, Marian Romeo
    Savastru, Roxana
    SPECTROSCOPY LETTERS, 2013, 46 (05) : 327 - 333