Spectral Analysis for a Discrete Metastable System Driven by Lévy Flights

被引:0
|
作者
Toralf Burghoff
Ilya Pavlyukevich
机构
[1] University of Lübeck,Institute of Medical Biometry and Statistics
[2] Friedrich Schiller University Jena,Institute for Mathematics
来源
Journal of Statistical Physics | 2015年 / 161卷
关键词
Spectrum; Spectral gap; Non self-adjoint operator; Markov chain; Fractional Laplacian; Semiclassical limit;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider a finite state time discrete Markov chain that mimic the behaviour of solutions of the stochastic differential equation Xtε(x)=x-∫0tU′(Xsε)ds+εLt,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} X_{t}^{\varepsilon }(x)=x-\int _0^t U^{\prime }(X_{s}^{\varepsilon })\, \mathrm {d}s+\varepsilon L_{t}, \end{aligned}$$\end{document}where U is a multi-well potential with n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} local minima and L=(Lt)t≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=(L_t)_{t\ge 0}$$\end{document} is a symmetric α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Lévy process (Lévy flights process). We investigate the spectrum of the generator of this Markov chain in the limit ε→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \rightarrow 0$$\end{document} and localize the top n eigenvalues λ1ε,…,λnε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ^\varepsilon _1,\ldots ,\lambda ^\varepsilon _n$$\end{document}. These eigenvalues turn out to be of the same algebraic order O(εα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal O(\varepsilon ^\alpha )$$\end{document} and are well separated from the rest of the spectrum by a spectral gap. We also determine the limits limε→0ε-αλiε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim _{\varepsilon \rightarrow 0}\varepsilon ^{-\alpha } \lambda ^\varepsilon _i$$\end{document}, 1≤i≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i\le n$$\end{document}, and show that the corresponding eigenvectors are approximately constant over the domains which correspond to the potential wells of U.
引用
收藏
页码:171 / 196
页数:25
相关论文
共 23 条
  • [1] Spectral Analysis for a Discrete Metastable System Driven by Levy Flights
    Burghoff, Toralf
    Pavlyukevich, Ilya
    JOURNAL OF STATISTICAL PHYSICS, 2015, 161 (01) : 171 - 196
  • [2] Spectral Analysis of Discrete Metastable Diffusions
    Di Gesu, Giacomo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (01) : 543 - 580
  • [3] Lévy flights, optimal foraging strategies, and foragers with a finite lifespan
    Dipierro, Serena
    Giacomin, Giovanni
    Valdinoci, Enrico
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2024, 19
  • [4] Lévy processes driven by stochastic volatility
    Chourdakis K.
    Asia-Pacific Financial Markets, 2005, 12 (4) : 333 - 352
  • [5] Analysis of a stochastic hybrid Gompertz tumor growth model driven by Lévy noise
    Hu, Guixin
    Li, Bingqing
    Geng, Zhihao
    STOCHASTIC MODELS, 2024,
  • [6] Spectral analysis of a class of Lévy-type processes and connection with some spin systems
    Vechambre, Gregoire
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (04): : 2581 - 2618
  • [7] Suprema of Lévy processes with completely monotone jumps: Spectral-theoretic approach
    Kwasnicki, Mateusz
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 13 - 122
  • [8] Stability for Markovian switching stochastic neural networks with infinite delay driven by Lévy noise
    Imzegouan C.
    Intl. J. Dyn. Cont., 2 (547-556): : 547 - 556
  • [9] Stochastic dynamic effects of media coverage and incubation on a distributed delayed epidemic system with Lévy jumps
    Liu, Chao
    Tian, Yilin
    Chen, Peng
    Cheung, Lora
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [10] Repairable System Analysis Using the Discrete Weibull Distribution
    Valadares, Danilo Gilberto de Oliveira
    Quinino, Roberto C.
    Cruz, Frederico R. B.
    Ho, Linda Lee
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (04) : 1507 - 1514