Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)’s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina

被引:0
|
作者
Zonghu Liao
Yang Hong
Dalia Kirschbaum
Robert F. Adler
Jonathan J. Gourley
Rick Wooten
机构
[1] The University of Oklahoma,School of Civil Engineering and Environmental Science, Center for Natural Hazard and Disaster Research, National Weather Center Suite 3630
[2] NASA Goddard Space Flight Center,undefined
[3] NOAA National Severe Storm Laboratory,undefined
[4] North Carolina Geological Survey,undefined
来源
Natural Hazards | 2011年 / 58卷
关键词
Landslide; Hurricane; Hazard prediction; LiDAR;
D O I
暂无
中图分类号
学科分类号
摘要
The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS’ predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan’s passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each landslide and the landslide’s extent and run out length.
引用
收藏
页码:325 / 339
页数:14
相关论文
共 3 条
  • [1] Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: a case study in Macon County, North Carolina
    Liao, Zonghu
    Hong, Yang
    Kirschbaum, Dalia
    Adler, Robert F.
    Gourley, Jonathan J.
    Wooten, Rick
    NATURAL HAZARDS, 2011, 58 (01) : 325 - 339
  • [2] Influence of soil mechanical and hydraulic parameters on the definition of rainfall intensity and duration thresholds based on Transient rainfall infiltration and grid-based regional slope-stability model (TRIGRS)
    Zhang, Sen
    Jiang, Qigang
    Xu, Xitong
    Tao, Guofang
    Zhang, Zhenchao
    Gao, Xin
    He, Chunlong
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [3] Analysis of Maximum-Rainfall-Infiltration-Induced Slope Stability Using the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model in Cililin, West Java']Java, Indonesia
    Sugianti, Khori
    Yunarto
    Sadisun, Imam A.
    Kartiko, Rendy D.
    INDONESIAN JOURNAL OF GEOSCIENCE, 2022, 9 (02): : 263 - 278