A note on D-optimal chemical balance weighing designs with autocorrelated observations

被引:0
作者
Łukasz Smaga
机构
[1] Adam Mickiewicz University,Faculty of Mathematics and Computer Science
来源
Statistical Papers | 2016年 / 57卷
关键词
Autoregressive observations; Chemical balance weighing design; D-efficiency; D-optimality; 62K05; 05B20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, D-optimal chemical balance weighing designs with three objects are considered. The error terms are assumed to form a first-order autoregressive process, which implies that the covariance matrix of the vector of errors depends on the known parameter ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. It is shown that the designs constructed by Katulska and Smaga (Metrika 76:393–407, 2013) are still D-optimal weighing designs with three objects under a wider interval of possible values for parameter ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} than that considered in that paper. Those designs are also proved to be highly D-efficient designs, when D-optimal design is not known.
引用
收藏
页码:721 / 730
页数:9
相关论文
共 34 条
[1]  
Angelis L(2001)Optimal exact experimental designs with correlated errors through a simulated annealing algorithm Comput Stat Data Anal 37 275-296
[2]  
Bora-Senta E(1973)An application of multivariate weighing designs Commun Stat 1 561-565
[3]  
Moyssiadis C(2009)D-optimal and near D-optimal J Stat Plan Inference 139 16-22
[4]  
Beckman RJ(2006) fractional factorial designs of resolution Stat Probab Lett 76 653-665
[5]  
Bulutoglu DA(2014)A-optimal chemical balance weighing design with nonhomogeneity of variances of errors J Stat Theory Pract 8 83-99
[6]  
Ryan KJ(1943)Optimal biased weighing designs and two-level main-effect plans Am Math Mon 50 603-605
[7]  
Ceranka B(2009)An elementary proof of the Budan–Fourier theorem Stat Pap 50 789-795
[8]  
Graczyk M(2012)Regular A-optimal design matrices Commun Stat—Theory Methods 41 2386-2393
[9]  
Katulska K(2013) with Biom Lett 50 15-26
[10]  
Cheng CS(1983)A-optimal spring balance weighing designs under some conditions J Stat Plan Inference 8 231-240