Multi-tissue transcriptomic and serum metabolomic assessment reveals systemic implications of acute ozone-induced stress response in male Wistar Kyoto rats

被引:0
|
作者
Thomas W. Jackson
John S. House
Andres R. Henriquez
Mette C. Schladweiler
Kimberly MP Jackson
Anna A. Fisher
Sam J. Snow
Devin I. Alewel
Allison A. Motsinger-Reif
Urmila P. Kodavanti
机构
[1] U.S. Environmental Protection Agency,Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment
[2] U.S. Environmental Protection Agency,Oak Ridge Institute for Science and Education Research Participation Program
[3] National Institutes of Health,Division of Intramural Research, National Institute of Environmental Health Sciences, Department of Health and Human Services
[4] Environmental Health Science and Research Bureau,undefined
[5] Health Canada,undefined
[6] Metabolon,undefined
[7] Inc,undefined
[8] ICF,undefined
来源
Metabolomics | / 19卷
关键词
Metabolic response; Neuroendocrine; Stress response; Transcriptome; Metabolome;
D O I
暂无
中图分类号
学科分类号
摘要
Air pollutant exposures have been linked to systemic disease; however, the underlying mechanisms between responses of the target tissue and systemic effects are poorly understood. A prototypic inducer of stress, ozone causes respiratory and systemic multiorgan effects through activation of a neuroendocrine stress response. The goal of this study was to assess transcriptomic signatures of multiple tissues and serum metabolomics to understand how neuroendocrine and adrenal-derived stress hormones contribute to multiorgan health outcomes. Male Wistar Kyoto rats (12–13 weeks old) were exposed to filtered air or 0.8 ppm ozone for 4-hours, and blood/tissues were collected immediately post-exposure. Each tissue had distinct expression profiles at baseline. Ozone changed 1,640 genes in lung, 274 in hypothalamus, 2,516 in adrenals, 1,333 in liver, 1,242 in adipose, and 5,102 in muscle (adjusted p-value < 0.1, absolute fold-change > 50%). Serum metabolomic analysis identified 863 metabolites, of which 447 were significantly altered in ozone-exposed rats (adjusted p-value < 0.1, absolute fold change > 20%). A total of 6 genes were differentially expressed in all 6 tissues. Glucocorticoid signaling, hypoxia, and GPCR signaling were commonly changed, but ozone induced tissue-specific changes in oxidative stress, immune processes, and metabolic pathways. Genes upregulated by TNF-mediated NFkB signaling were differentially expressed in all ozone-exposed tissues, but those defining inflammatory response were tissue-specific. Upstream predictor analysis identified common mediators of effects including glucocorticoids, although the specific genes responsible for these predictors varied by tissue. Metabolomic analysis showed major changes in lipids, amino acids, and metabolites linked to the gut microbiome, concordant with transcriptional changes identified through pathway analysis within liver, muscle, and adipose tissues. The distribution of receptors and transcriptional mechanisms underlying the ozone-induced stress response are tissue-specific and involve induction of unique gene networks and metabolic phenotypes, but the shared initiating triggers converge into shared pathway-level responses. This multi-tissue transcriptomic analysis, combined with circulating metabolomic assessment, allows characterization of the systemic inhaled pollutant-induced stress response.
引用
收藏
相关论文
共 2 条
  • [1] Multi-tissue transcriptomic and serum metabolomic assessment reveals systemic implications of acute ozone-induced stress response in male Wistar Kyoto rats
    Jackson, Thomas W.
    House, John S.
    Henriquez, Andres R.
    Schladweiler, Mette C.
    Jackson, Kimberly M. P.
    Fisher, Anna A.
    Snow, Sam J.
    Alewel, Devin I.
    Motsinger-Reif, Allison A.
    Kodavanti, Urmila P.
    METABOLOMICS, 2023, 19 (09)
  • [2] Influence of Mild Chronic Stress and Social Isolation on Acute Ozone-Induced Alterations in Stress Biomarkers and Brain-Region-Specific Gene Expression in Male Wistar-Kyoto Rats
    Valdez, Matthew C.
    Freeborn, Danielle L.
    Valdez, Joseph M.
    Henriquez, Andres R.
    Snow, Samantha J.
    Jackson, Thomas W.
    Kodavanti, Prasada Rao S.
    Kodavanti, Urmila P.
    ANTIOXIDANTS, 2023, 12 (11)