Surface and chemical diffusion effects of nanowire electrodes in lithium-ion batteries

被引:0
|
作者
Ning Jia
ZhiLong Peng
Shuai Wang
JianJun Li
Yin Yao
ShaoHua Chen
机构
[1] Beijing Institute of Technology,Institute of Advanced Structure Technology
[2] Beijing Institute of Technology,Beijing Key Laboratory of Lightweight Multi
[3] Beijing Institute of Technology,Functional Composite Materials and Structures
[4] Central South University,State Key Laboratory of Explosion Science and Technology
来源
Science China Technological Sciences | 2020年 / 63卷
关键词
lithium-ion battery; nanowire electrode; diffusion-induced stresses; surface effect; surface energy density;
D O I
暂无
中图分类号
学科分类号
摘要
Nanostructured electrodes with surface effect show a distinct advantage in prolonging the lifetime of lithium-ion (Li-ion) battery. In order to characterize the surface and chemical diffusion effects in a cylindrical nanowire electrode, a new theoretical model is proposed based on a combination of the diffusion theory and a surface energy density-based elastic theory. With the reformulation of the stress boundary condition in terms of a surface-induced traction, the bulk surface energy density and surface relaxation parameter are introduced as two simple parameters characterizing the surface effect in nanowire electrodes, instead of the surface elastic constants always used in existing models. Closed-form solutions of the diffusion-induced elastic fields under potentiostatic operation are derived. It is found that the radial expansion and tensile stress in nanowire electrodes become smaller than the classical predictions without surface effect and decrease monotonically with a decreasing nanowire radius when the surface effect is considered. Such phenomena can be basically attributed to the action of surface-induced traction on the nanowire surface. These results demonstrate the convenience and effectiveness of the present model in predicting the chemo-mechanical behavior of nanowire electrodes, which should be of guidance value for the optimal design of durable electrodes.
引用
收藏
页码:2413 / 2422
页数:9
相关论文
共 50 条
  • [21] Beneficial Effects of Three-Dimensional Structured Electrodes for the Fast Charging of Lithium-Ion Batteries
    De Lauri, Vittorio
    Krumbein, Lukas
    Hein, Simon
    Prifling, Benedikt
    Schmidt, Volker
    Danner, Timo
    Latz, Arnulf
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12) : 13847 - 13859
  • [22] Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries
    Zhang, Chao
    Xu, Jun
    Cao, Lei
    Wu, Zenan
    Santhanagopalan, Shriram
    JOURNAL OF POWER SOURCES, 2017, 357 : 126 - 137
  • [23] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 : 299 - 304
  • [24] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 (03) : 299 - 304
  • [25] A Review on the Electrospun Oxide Nanofibers for Anode Electrodes in Lithium-Ion Batteries
    Wang, Chang
    Li, Xiujuan
    Cai, Ziqing
    Huang, Jing
    Fan, Xin
    Liu, Hui
    Xu, Weilin
    Fang, Dong
    CURRENT NANOSCIENCE, 2017, 13 (04) : 394 - 409
  • [26] Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries
    Zhang, Hongtao
    Xu, Hui
    SOLID STATE IONICS, 2014, 263 : 23 - 26
  • [27] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-Yu
    Lu, Shi-Gang
    Wang, Han
    Ding, Hai-Yang
    RARE METALS, 2013, 32 (03) : 299 - 304
  • [28] The impedance of lithium-ion batteries
    T. L. Kulova
    V. A. Tarnopol’skii
    A. M. Skundin
    Russian Journal of Electrochemistry, 2009, 45 : 38 - 44
  • [29] The impedance of lithium-ion batteries
    Kulova, T. L.
    Tarnopol'skii, V. A.
    Skundin, A. M.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (01) : 38 - 44
  • [30] Understanding thermal and mechanical effects on lithium plating in lithium-ion batteries
    Qiu, Yitao
    Zhang, Xiaoxuan
    Usubelli, Camille
    Mayer, Daniel
    Linder, Christian
    Christensen, Jake
    JOURNAL OF POWER SOURCES, 2022, 541