Finsler metrics on symmetric cones

被引:0
|
作者
Yongdo Lim
机构
[1] Topology and Geometry Research Center,
[2] Kyungpook National University,undefined
[3] Taegu 702-701,undefined
[4] Korea (e-mail: ylim@kyungpook.ac.kr) ,undefined
来源
Mathematische Annalen | 2000年 / 316卷
关键词
Mathematics Subject Classification (1991): 22A15, 32M15, 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let V be a simple Euclidean Jordan algebra with an associative inner product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\langle \cdot|\cdot \rangle,$\end{document} and let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\Omega$\end{document} be the corresponding symmetric cone. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathcal J}(V)$\end{document} be the compact symmetric space of all primitive idempotents of V. We show that the function s(a,b) defined by
引用
收藏
页码:379 / 389
页数:10
相关论文
共 50 条
  • [1] Finsler metrics on symmetric cones
    Lim, YD
    MATHEMATISCHE ANNALEN, 2000, 316 (02) : 379 - 389
  • [2] On some Finsler structures of symmetric cones
    Bae, H
    Lim, Y
    FORUM MATHEMATICUM, 2001, 13 (05) : 629 - 639
  • [3] Spherically symmetric Finsler metrics in Rn
    Zhou, Linfeng
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (1-2): : 67 - 77
  • [4] Siegel domains over Finsler symmetric cones
    Chu, Cho-Ho
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 145 - 169
  • [5] Horofunction compactifications of symmetric cones under Finsler distances
    Lemmens, Bas
    ANNALES FENNICI MATHEMATICI, 2023, 48 (02): : 729 - 756
  • [6] On projectively related spherically symmetric Finsler metrics
    Mo, Xiaohuan
    Wang, Xiaoyang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (1-2): : 249 - 259
  • [7] On conformally related spherically symmetric Finsler metrics
    Maleki, Maryam
    Sadeghzadeh, Nasrin
    Rajabi, Tahereh
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (10)
  • [8] On the classification of Landsberg spherically symmetric Finsler metrics
    Elgendi, S. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2021, 18 (14)
  • [9] On cylindrical symmetric projectively flat Finsler metrics
    Solorzano, Newton
    Leon, Victor
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [10] On spherically symmetric Finsler metrics of scalar curvature
    Huang, Libing
    Mo, Xiaohuan
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (11) : 2279 - 2287