On the modularity of elliptic curves over a composite field of some real quadratic fields

被引:2
作者
Yoshikawa S. [1 ]
机构
[1] Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo
关键词
Elliptic Curve; Elliptic Curf; Root Number; Cartan Subgroup; Composite Field;
D O I
10.1007/s40993-016-0060-8
中图分类号
学科分类号
摘要
Let K be a composite field of some real quadratic fields. We give a sufficient condition on K such that all elliptic curves over K are modular. © 2016, The Author(s).
引用
收藏
相关论文
共 12 条
[1]  
Breuil C., Conrad B., Diamond F., Taylor R., On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Am. Math. Soc., 14, pp. 843-939, (2001)
[2]  
Dokchitser T., Dokchitser V., On the Birch–Swinnerton quotients modulo squares, Ann. Math., 172, pp. 567-596, (2010)
[3]  
Freitas N., Le Hung B., Siksek S., Elliptic curves over real quadratic fields are modular, Invent. Math., 201, pp. 159-206, (2015)
[4]  
Goldfeld D., Conjectures on elliptic curves over quadratic fields, Lecture Notes in Mathematics, 751, (1979)
[5]  
Le Hung B., Modularity of some elliptic curves over totally real fields
[6]  
Serre J.P., Propriétés galoisienne des points d’ordre fini des courbes elliptiques, Invent. Math., 15, pp. 259-331, (1971)
[7]  
Skinner C., Wiles A., Nearly ordinary deformations of irreducible residual representations, Annales de la Faculte des sciences de Toulouse: Mathematiques, 10, 1, pp. 185-215, (2001)
[8]  
Taylor R., Wiles A., Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141, 3, pp. 553-572, (1995)
[9]  
Thorne J., Automorphy of some residually dihedral Galois representations, Preprint
[10]  
Thorne J., are modular, Preprint