On Optimal Heuristic Randomized Semidecision Procedures, with Applications to Proof Complexity and Cryptography

被引:0
作者
Edward A. Hirsch
Dmitry Itsykson
Ivan Monakhov
Alexander Smal
机构
[1] Steklov Institute of Mathematics at St. Petersburg,
来源
Theory of Computing Systems | 2012年 / 51卷
关键词
Propositional proof complexity; Optimal algorithm; i.o. one-way;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of an optimal propositional proof system is a major open question in proof complexity; many people conjecture that such systems do not exist. Krajíček and Pudlák (J. Symbol. Logic 54(3):1063, 1989) show that this question is equivalent to the existence of an algorithm that is optimal on all propositional tautologies. Monroe (Theor. Comput. Sci. 412(4–5):478, 2011) recently presented a conjecture implying that such an algorithm does not exist.
引用
收藏
页码:179 / 195
页数:16
相关论文
共 26 条
[11]  
Pervyshev K.(2001)Propositional proof systems, the consistency of first order theories and the complexity of computations Bull. Symb. Log. 7 197-212
[12]  
Hirsch E.A.(1973)On the weak pigeonhole principle Probl. Inf. Transm. 9 265-266
[13]  
Itsykson D.M.(1987)Tautologies from pseudorandom generators Combinatorica 7 357-363
[14]  
Håstad J.(2011)Universal sequential search problems Theor. Comput. Sci. 412 478-481
[15]  
Impagliazzo R.(2003)One-way functions and pseudorandom generators Theor. Comput. Sci. 295 323-339
[16]  
Levin L.A.(undefined)Speedup for natural problems and noncomputability undefined undefined undefined-undefined
[17]  
Luby M.(undefined)On reducibility and symmetry of disjoint NP pairs undefined undefined undefined-undefined
[18]  
Itsykson D.M.(undefined)undefined undefined undefined undefined-undefined
[19]  
Krajíček J.(undefined)undefined undefined undefined undefined-undefined
[20]  
Pudlák P.(undefined)undefined undefined undefined undefined-undefined