The well-known three primes theorem says that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable for prime variables p1,p2,p3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p_1, p_2, p_3$$\end{document}. In this paper we shall prove that the three primes theorem still holds if each of the three primes is in the intersection of two Piatetski--Shapiro sets.
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Guo, Victor Zhenyu
Li, Jinjiang
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
Li, Jinjiang
Zhang, Min
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China