Efficient Markov chain Monte Carlo with incomplete multinomial data

被引:0
作者
Kwang Woo Ahn
Kung-Sik Chan
机构
[1] Medical College of Wisconsin,Division of Biostatistics
[2] The University of Iowa,Department of Statistics and Actuarial Science
来源
Statistics and Computing | 2010年 / 20卷
关键词
Blocking; Gibbs sampler; Dirichlet distribution; Epidemiology;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a block Gibbs sampling scheme for incomplete multinomial data. We show that the new approach facilitates maximal blocking, thereby reducing serial dependency and speeding up the convergence of the Gibbs sampler. We compare the efficiency of the new method with the standard, non-block Gibbs sampler via a number of numerical examples.
引用
收藏
页码:447 / 456
页数:9
相关论文
共 16 条
[1]  
Amit Y.(1996)Convergence properties of the Gibbs sampler for perturbations of Gaussians Ann. Stat. 24 122-140
[2]  
Best N.G.(1996)Bayesian analysis of realistically complex models J. R. Stat. Soc. Ser. A 159 323-342
[3]  
Spiegelhalter D.J.(1993)Asymptotic behavior of the Gibbs sampler J. Am. Stat. Assoc. 88 320-326
[4]  
Thomas A.(1992)Practical Markov chain Monte Carlo (with discussion) Stat. Sci. 7 473-511
[5]  
Brayne C.E.G.(1994)Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes Biometrika 81 27-40
[6]  
Chan K.S.(1997)Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler J. R. Stat. Soc. Ser. B 59 291-317
[7]  
Geyer C.J.(2001)Approximate predetermined convergence properties of the Gibbs sampler J. Comput. Graph. Stat. 10 216-229
[8]  
Liu J.S.(1995)Minorization conditions and convergence rates for Markov chain Monte Carlo J. Am. Stat. Assoc. 90 558-566
[9]  
Wong W.H.(1994)Markov chains for exploring posterior distributions (with discussion) Ann. Stat. 22 1701-1762
[10]  
Kong A.(undefined)undefined undefined undefined undefined-undefined