We study the Cauchy problem with periodic initial data for the forward-backward heat equation defined by a J-self-adjoint linear operator L depending on a small parameter. The problem originates from the lubrication approximation of a viscous fluid film on the inner surface of a rotating cylinder. For a certain range of the parameter we rigorously prove the conjecture, based on numerical evidence, that the complete set of eigenvectors of the operator L does not form a Riesz basis in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal{L}^2(-\pi, \pi)$$\end{document}. Our method can be applied to a wide range of evolution problems given by PT-symmetric operators.