On the Nature of Ill-Posedness of the Forward-Backward Heat Equation

被引:0
作者
Marina Chugunova
Illya M. Karabash
Sergei G. Pyatkov
机构
[1] University of Toronto,Department of Math and Stat
[2] University of Calgary,Department of Math.
[3] Institute of Applied Mathematics and Mechanics,undefined
[4] University of Hanty-Mansiisk,undefined
来源
Integral Equations and Operator Theory | 2009年 / 65卷
关键词
Primary 35P10; Secondary 35Q35, 35K15, 76A20; Viscous fluid film; forward-backward diffusion; parabolic equation of mixed type; highly non-self-adjoint differential operator; Riesz basis property; completeness;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Cauchy problem with periodic initial data for the forward-backward heat equation defined by a J-self-adjoint linear operator L depending on a small parameter. The problem originates from the lubrication approximation of a viscous fluid film on the inner surface of a rotating cylinder. For a certain range of the parameter we rigorously prove the conjecture, based on numerical evidence, that the complete set of eigenvectors of the operator L does not form a Riesz basis in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^2(-\pi, \pi)$$\end{document}. Our method can be applied to a wide range of evolution problems given by PT-symmetric operators.
引用
收藏
页码:319 / 344
页数:25
相关论文
empty
未找到相关数据