Counter-ions at charged walls: Two-dimensional systems

被引:0
作者
L. Šamaj
E. Trizac
机构
[1] Université Paris-Sud,Laboratoire de Physique Théorique et Modèles Statistiques
来源
The European Physical Journal E | 2011年 / 34卷
关键词
Thermodynamic Limit; Grassmann Variable; Coulomb System; Asymptotic Decay; Wigner Crystal;
D O I
暂无
中图分类号
学科分类号
摘要
We study equilibrium statistical mechanics of classical point counter-ions, formulated on 2D Euclidean space with logarithmic Coulomb interactions (infinite number of particles) or on the cylinder surface (finite particle numbers), in the vicinity of a single uniformly charged line (one single double layer), or between two such lines (interacting double layers). The weak-coupling Poisson-Boltzmann theory, which applies when the coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} is small, is briefly recapitulated (the coupling constant is defined as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \equiv$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document}e2 , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \beta$\end{document} is the inverse temperature, and e the counter-ion charge). The opposite limit ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \rightarrow$\end{document} ∞ is treated by using a recent method based on an exact expansion around the ground-state Wigner crystal of counter-ions. These two limiting results are compared at intermediary values of the coupling constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \gamma$\end{document} = 1, 2, 3) , to exact results derived within a 1D lattice representation of 2D Coulomb systems in terms of anti-commuting field variables. The models (density profile, pressure) are solved exactly for any particles numbers N at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 2 and up to relatively large finite N at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 4 and 6. For the one-line geometry, the decay of the density profile at asymptotic distance from the line undergoes a fundamental change with respect to the mean-field behavior at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 6 . The like-charge attraction regime, possible for large \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} but precluded at mean-field level, survives for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 4 and 6, but disappears at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Gamma$\end{document} = 2 .
引用
收藏
相关论文
共 116 条
[31]  
Netz R.R.(2011)undefined Phys. Rev. Lett. 106 078301-undefined
[32]  
Netz R.R.(2006)undefined Phys. Rev. E 73 010501(R)-undefined
[33]  
Moreira A.G.(1981)undefined Helv. Phys. Acta 54 332-undefined
[34]  
Netz R.R.(1995)undefined J. Stat. Phys. 80 811-undefined
[35]  
Moreira A.G.(2004)undefined J. Stat. Phys. 117 131-undefined
[36]  
Netz R.R.(2004)undefined J. Stat. Phys. 117 159-undefined
[37]  
C Lau A.W.(1999)undefined Phys. Rev. E 60 5802-undefined
[38]  
Levine D.(2009)undefined J. Chem. Phys. 130 124110-undefined
[39]  
Pincus P.(1978)undefined J. Chem. Phys. 69 5441-undefined
[40]  
C Lau A.W.(1979)undefined J. Electroanal. Chem. 102 315-undefined