A family of three nested regular polygon central configurations

被引:0
作者
Marcelo Marchesin
机构
[1] Mathematics Department of the Federal University of Minas Gerais (UFMG),
来源
Astrophysics and Space Science | 2019年 / 364卷
关键词
-body problem; Relative equilibria; Central configurations;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of a highly symmetric family of central configurations in which 16 non-negative masses move in concentric circular motions in p=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p=3$\end{document} rings of radii a1,a2,a3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{1},a_{2},a_{3}$\end{document}. On the first ring, there are four bodies of equal masses in a square configuration. On the second ring there are also four bodies of equal masses, each of which located on the bisectors of the angles formed by each pair of the position vectors of two consecutive bodies of the first ring. On the third ring, there are eight bodies of equal masses, each of which is located on the bisectors of the angles formed by each pair of position vectors of two consecutive bodies of the previous two rings. We study the inverse problem, i.e., given three positive radii a1,a2,a3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{1},a_{2},a_{3}$\end{document} we determine the values of the corresponding non-negative masses m1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{1}$\end{document}, m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{2}$\end{document} and m3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$m_{3}$\end{document}, for which the above described configuration is central. We present some particular interesting cases and study some geometrical features of such configurations. We end this paper proposing several lines of possible further generalizations.
引用
收藏
相关论文
共 22 条
[1]  
Albouy A.(2012)Finiteness of central configurations of five bodies in the plane Ann. Math. 176 1-54
[2]  
Kaloshin V.(2009)On the existence of central configurations of Qual. Theory Dyn. Syst. 8 255-265
[3]  
Corbera M.(2014) nested Astrophys. Space Sci. 352 443-460
[4]  
Delgado J.(1767)-gons Novi Comment. Acad. Sci. Imp. Petrop. 11 144-151
[5]  
Llibre J.(2006)A highly symmetric restricted nine-body problem and the linear stability of its relative equilibria Invent. Math. 163 289-312
[6]  
da Paixão D.(2010)De motu rectilineo trium corporum se mutuo attahentium Phys. Lett. A 377 1875-1880
[7]  
Marchesin M.(2010)Finiteness of relative equilibria of the four-body problem Ital. J. Pure Appl. Math. 27 63-80
[8]  
Euler L.(2015)The relationships between regular polygon central configurations and masses for Newtonian N-body problems Celest. Mech. Dyn. Astron. 122 405-418
[9]  
Hampton M.(2019)On periodic solutions for nested polygon planar Celest. Mech. Dyn. Astron. 131 17-54
[10]  
Moeckel R.(2001) body problems with arbitrary masses Phys. Lett. A 290 49-1058