Small-Scale Structure of Space-Time and Dirac Operator

被引:0
作者
Marcos Rosenbaum
机构
[1] UNAM,Instituto de Ciencias Nucleares
来源
International Journal of Theoretical Physics | 2001年 / 40卷
关键词
Field Theory; Elementary Particle; Quantum Field Theory; Dirac Operator; Noncommutative Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
Connes' noncommutative geometry is presented and the relevance of the Dirac operator in the elucidation of the structure of space-time at the Planck length is discussed.
引用
收藏
页码:139 / 163
页数:24
相关论文
共 23 条
[1]  
Chamsedinne A.(1996)Universal formula for noncommutative geometry actions; Unification of gravity and the Standard Model Physical Review Letters 77 4868-4871
[2]  
Connes A.(1995)Noncommutative geometry and reality Journal of Mathematical Physics 36 6194-6231
[3]  
Connes A.(1998)Hopf algebras, renormalization and noncommutative geometry Communications in Mathematical Physics 199 203-242
[4]  
Connes A.(1998)Hopf algebras, cyclic cohomology and the transverse index theorem Communications in Mathematical Physics 198 198-246
[5]  
Kreimer D.(1966)Existence de traces non normals Comptes Rendus de l'Academie des Sciences Paris, Series A-B 262 A1107-A1108
[6]  
Connes A.(1995)The quantum structure of spacetime at the Planck scale and quantum fields Communications in Mathematical Physics 172 187-220
[7]  
Moscovici H.(1982)Higher derivative quantum gravity: One loop counterterms and asymptotic freedom Nuclear Physics B 201 469-491
[8]  
Dixmier J.(1985)A new proof of Weyl's formula on the asymptotic distribution of eigenvalues Advances in Mathematics 55 131-160
[9]  
Doplicher S.(1996)Can one hear the shape of a drum? American Mathematical Monthly 73 10-23
[10]  
Fredenhagen K.(1998)On the Hopf algebra structure of perturbative quantum field theories Advances in Theoretical and Mathematical Physics 2 303-334