Modeling analysis of the lipid bilayer–cytoskeleton coupling in erythrocyte membrane

被引:0
作者
Ivana Pajic-Lijakovic
Milan Milivojevic
机构
[1] University of Belgrade,Faculty of Technology and Metallurgy
来源
Biomechanics and Modeling in Mechanobiology | 2014年 / 13卷
关键词
Coupling mechanism; Viscoelasticity; Membrane; Modeling; Damping effects;
D O I
暂无
中图分类号
学科分类号
摘要
Studies of thermal fluctuations in discocytes, echinocytes, and spherocytes suggest that the coupling between lipid bilayer and cytoskeleton can affect viscoelastic behavior of single erythrocyte membranes. To test this hypothesis, we developed a 3D constitutive model describing viscoelastic behavior of erythrocyte membranes, at long relaxation times t∈[0.20s,1.05s]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in [0.20\,\mathrm {s}, 1.05\,\mathrm {s}]$$\end{document} and short relaxation times t∈[0.03s,0.20s]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \in [0.03\,\mathrm {s}, 0.20\,\mathrm {s}]$$\end{document}. The model was constructed using combination of spring and spring pot rheological elements arranged in parallel. The rearrangement of cytoskeleton induced by changing the bending state of lipid bilayer was described by a modified Eyring model. The model predictions point to an anomalous nature of energy dissipation and an ordered harmonic nature of the coupling mechanism described by a series of fractional derivatives of the order nα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} (where n∈[-1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ n \in [- 1, 2]$$\end{document}). As a result, the stress generated within the lipid bilayer is related to the rate of change of the irreversible stress within the cytoskeleton.
引用
收藏
页码:1097 / 1104
页数:7
相关论文
共 90 条
  • [1] Amin MS(2007)Microrheology of red blood cell membrane using dynamics scattering microscopy Opt Express 15 17001- 17009
  • [2] Park YK(2012)Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering PLoS ONE 7 e406671 1-e406671 10
  • [3] Lue N(2012)Hydrodynamics deformation reveals two coupled modes/time scales of red blood cells relaxation Soft Matter 8 11240-11248
  • [4] Dasari RR(2003)Fractional derivatives embody essential features of cell rheological behaviour Ann Biomed Eng 31 692-699
  • [5] Badizadegan K(2005)Red blood cell membrane fluctuations and shape controlled by ATP-Induced cytoskeletal defects Biophys J 88 1859-1874
  • [6] Feld MS(2007)Less is more: removing membrane attachments stiffness the RBC cytoskeleton New J Phys 9 1-8
  • [7] Popescu G(2003)Peptide folding simulations Curr Op Struct Biol 13 168-174
  • [8] Boss D(2001)Dynamics of inhomogeneous cross-linked polymers consisting of domains of different sizes J Chem Phys 115 6785-6793
  • [9] Hoffmann A(2011)Retraction for “Phospholipid bilayers are viscoelastic”, by Harland CW, Bradley MJ, Parthasarathy R, which appeared in PNAS 107(45):19146–19150, 2010 PNAS 108 14705-17275
  • [10] Rappaz B(2009)The role of fluctuations and stress on the effective viscosity of cell aggregates PNAS 106 17271-1939