A Euclidean Algorithm for Normal Bases

被引:0
作者
B. Sunar
机构
[1] Worcester Polytechnic Institute,Electrical & Computer Engineering
来源
Acta Applicandae Mathematica | 2006年 / 93卷
关键词
11A05; 11A67; 11T55; 11T06; 11T71; extended Euclidean algorithm; finite fields; normal basis; inversion;
D O I
暂无
中图分类号
学科分类号
摘要
Inversion in finite fields \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$GF(2^k)$\end{document} is a critical operation for many applications. A well-known representation basis, i.e., normal basis, provides an efficient squaring operation realized as a simple rotation of the operand coefficients. Inversion in normal basis is computed using methods derived from Fermat’s Little theorem, e.g., the Itoh–Tsujii algorithm or with the aid of basis conversion algorithms using the Extended Euclidean algorithm. In this paper we present alternative normal basis inversion algorithm derived from the polynomial version of the extended Euclidean algorithm. The normal basis Euclidean algorithm has (roughly) the same complexity as the polynomial version of the Euclidean algorithm. The proposed algorithm requires on average a linear number of multiplications. We also present a modification to our algorithm which delays the multiplications to the very end of the computation and thereby gives opportunity for recursive computation using only a logarithmic number of multiplications.
引用
收藏
页码:57 / 74
页数:17
相关论文
共 22 条
  • [1] Hasan M.A.(1992)Modular construction of low complexity parallel multipliers for a class of finite fields IEEE Trans. Comput. 41 962-971
  • [2] Wang M.(1988)A comparison of VLSI architecture of finite field multipliers using dual-, normal-, or standard bases IEEE Trans. Comput. 37 735-739
  • [3] Bhargava V.K.(1988)A fast algorithm for computing multiplicative inverses in using normal bases Inform. and Comput. 78 171-177
  • [4] Hsu I.S.(1998)Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields IEEE Trans. Comput. 47 353-356
  • [5] Truong T.K.(2001)An efficient optimal normal basis type II multiplier IEEE Trans. Comput. 50 83-87
  • [6] Deutsch L.J.(2001)A fast algorithm for multiplicative inversion in using normal basis IEEE Trans. Comput. 50 394-398
  • [7] Reed I.S.(1985)VLSI architectures for computing multiplications and inverses in IEEE Trans. Comput. C-34 709-717
  • [8] Itoh T.(undefined)undefined undefined undefined undefined-undefined
  • [9] Tsujii S.(undefined)undefined undefined undefined undefined-undefined
  • [10] Koç Ç.K.(undefined)undefined undefined undefined undefined-undefined