Positive-definite functions on infinite-dimensional groups

被引:0
作者
Hiroaki Shimomura
机构
[1] Kochi University,Department of Mathematics, Faculty of Education
来源
Mathematische Zeitschrift | 2008年 / 259卷
关键词
58D20; 22E65;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns positive-definite functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} on infinite-dimensional groups G. Our main results are as follows: first, we claim that if G has a σ-finite measure μ on the Borel field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frak{B}(G)$$\end{document} whose right admissible shifts form a dense subgroup G0, a unique (up to equivalence) unitary representation (H, T) with a cyclic vector corresponds to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi$$\end{document} through a method similar to that used for the G–N–S construction. Second, we show that the result remains true, even if we go to the inductive limits of such groups, and we derive two kinds of theorems, those taking either G or G0 as a central object. Finally, we proceed to an important example of infinite-dimensional groups, the group of diffeomorphisms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Diff}_0^*(M)$$\end{document} on smooth manifolds M, and see that the correspondence between positive-definite functions and unitary representations holds for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\rm Diff}_0^*(M)$$\end{document} under a fairy mild condition. For a technical reason, we impose condition (c) in Sect. 2 on the measure space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G,\frak{B}(G),\mu)$$\end{document} throughout this paper. It is also a weak condition, and it is satified, if G is separable, or if μ is Radon.
引用
收藏
页码:355 / 361
页数:6
相关论文
共 5 条
[1]  
Shavgulidze E.(1995)Mesures quasi-invariantes sur les groupes de difféomorphismes des variétés riemaniennes C. R. Acad. Sci. 321 229-232
[2]  
Shimomura H.(2001)Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations J. Funct. Anal. 187 406-441
[3]  
Vershik A.M.(1975)Representations of the group of diffeomorphism Usp. Mat. Nauk. 30 3-50
[4]  
Gel’fand I.M.(undefined)undefined undefined undefined undefined-undefined
[5]  
Graev M.I.(undefined)undefined undefined undefined undefined-undefined