Numerical ranges and complex symmetric operators in semi-inner-product spaces

被引:0
|
作者
Il Ju An
Jaeseong Heo
机构
[1] Kyung Hee University,Department of Applied Mathematics
[2] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
来源
Journal of Inequalities and Applications | / 2022卷
关键词
Semi-inner-product space; Numerical range; Conjugations; Complex symmetric operators; Generalized adjoint; 46C50; 47A05; 47A12;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on ℓ2p(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{2}^{p}(\mathbb{C})$\end{document}(1≤p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1\le p < \infty )$\end{document} and show that the numerical range of the backward shift on an infinite-dimensional space ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell ^{p}$\end{document} is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on ℓnp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{n}^{p}$\end{document}(n≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n \ge 2)$\end{document} is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
引用
收藏
相关论文
共 17 条
  • [1] Numerical ranges and complex symmetric operators in semi-inner-product spaces
    An, Il Ju
    Heo, Jaeseong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [2] Complex symmetric operators with closed numerical ranges
    Liang, Bin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (02)
  • [3] On the geometry of numerical ranges in spaces with an indefinite inner product
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 17 - 34
  • [4] On generalized numerical ranges of operators on an indefinite inner product space
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) : 203 - 233
  • [5] NUMERICAL RANGES OF THE PRODUCT OF OPERATORS
    Du, Hongke
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wang, Yueqing
    Zuo, Ning
    OPERATORS AND MATRICES, 2017, 11 (01): : 171 - 180
  • [6] Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces
    Heydari, Mohammad Taghi
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (01): : 87 - 98
  • [7] The spectrum of the product of operators, and the product of their numerical ranges
    Li, Chi-Kwong
    Tsai, Ming-Cheng
    Wang, Kuo-Zhong
    Wong, Ngai-Ching
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 469 : 487 - 499
  • [8] NUMERICAL RANGES OF COMPOSITION OPERATORS WITH INNER SYMBOLS
    Matache, Valentin
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (01) : 235 - 249
  • [9] Numerical range of tensor product of operators in semi-Hilbert spaces
    Altwaijry, Najla
    Chesneau, Christophe
    Feki, Kais
    Taki, Zakaria
    KUWAIT JOURNAL OF SCIENCE, 2025, 52 (02)
  • [10] Remarks on numerical ranges of operators in spaces with an indefinite metric
    Li, CK
    Rodman, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) : 973 - 982