The sum of the Betti numbers of smooth Hilbert schemes

被引:0
作者
Joseph Donato
Monica Lewis
Tim Ryan
Faustas Udrenas
Zijian Zhang
机构
[1] University of Michigan,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2022年 / 55卷
关键词
Hilbert scheme; Cohomology; Homology;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Skjelnes and Smith classified which Hilbert schemes on projective space are smooth in terms of integer partitions λ=(λ1,…,λr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = (\lambda _1,\ldots ,\lambda _{r})$$\end{document} with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document}, λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, or n⩾λ1⩾⋯⩾λr⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant \lambda _1\geqslant \cdots \geqslant \lambda _r \geqslant 1$$\end{document}. In particular, they found there to be seven families of smooth Hilbert schemes: one with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} or λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, one with Hilbert schemes on the projective line or plane, 4 families with λr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r=1$$\end{document}, and one with λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}. In this paper, we compute the sum of the Betti numbers for all of these families of smooth Hilbert schemes over projective space except the case λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}.
引用
收藏
页码:393 / 411
页数:18
相关论文
共 50 条
  • [41] QUIVER VARIETIES AND HILBERT SCHEMES
    Kuznetsov, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) : 673 - 697
  • [42] Hilbert schemes of 8 points
    Cartwright, Dustin A.
    Erman, Daniel
    Velasco, Mauricio
    Viray, Bianca
    ALGEBRA & NUMBER THEORY, 2009, 3 (07) : 763 - 795
  • [43] A refinement of Betti numbers and homology in the presence of a continuous function, I
    Burghelea, Dan
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (04): : 2051 - 2080
  • [44] L2-Betti Numbers of Plane Algebraic Curves
    Friedl, Stefan
    Leidy, Constance
    Maxim, Laurentiu
    MICHIGAN MATHEMATICAL JOURNAL, 2009, 58 (02) : 291 - 301
  • [45] Intersection Betti Numbers of the GIT Quotient of Quartic Plane Curves
    Aquino, Juan Vasquez
    TRANSFORMATION GROUPS, 2024,
  • [46] Virtual rational Betti numbers of abelian-by-polycyclic groups
    Kochloukova, D. H.
    Mokari, F. Y.
    JOURNAL OF ALGEBRA, 2015, 443 : 75 - 98
  • [47] Syzygies in Hilbert schemes of complete intersections
    Caviglia, Giulio
    Sammartano, Alessio
    JOURNAL OF ALGEBRA, 2023, 619 : 538 - 557
  • [48] Rational Singularities of Nested Hilbert Schemes
    Ramkumar, Ritvik
    Sammartano, Alessio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (02) : 1061 - 1122
  • [49] From Oil Fields to Hilbert Schemes
    Kreuzer, Martin
    Poulisse, Hennie
    Robbiano, Lorenzo
    APPROXIMATE COMMUTATIVE ALGEBRA, 2009, : 1 - +
  • [50] Hilbert Schemes for Quantum Planes are Projective
    Chan, Daniel
    ALGEBRAS AND REPRESENTATION THEORY, 2010, 13 (01) : 119 - 126