Signs of Fourier coefficients of cusp forms at integers represented by an integral binary quadratic form

被引:0
作者
Lalit Vaishya
机构
[1] Harish-Chandra Research Institute,
[2] HBNI,undefined
来源
Proceedings - Mathematical Sciences | 2021年 / 131卷
关键词
Modular form of one variable; Fourier coefficients of cusp form; Rankin–Selberg ; -function; asymptotic behaviour; Primary: 11F30; 11F11; 11M06; Secondary: 11N37;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we establish that there are infinitely many sign changes of Fourier coefficients of a normalised Hecke eigenform supported at positive integers represented by a primitive integral binary quadratic form with negative discriminant whose class number is 1. We also provide a quantitative result for the number of such sign changes in the interval (x, 2x] for sufficiently large x.
引用
收藏
相关论文
共 10 条
[1]  
Deligne P(1974)La Conjecture de Weil, I Inst. Hautes Etudes Sci. Publ. Math. 43 273-307
[2]  
Knopp M(2003)On the signs of Fourier coefficients of cusp forms, The Ramanujan J. 7 269-277
[3]  
Kohnen W(2014)Sign changes of Fourier coefficients of cusp forms supported on prime power indices Int. J. Number Theory 10 1921-1927
[4]  
Pritbikin W(2008)Lau Yuk-Kam and Shparlinski I E, On the number of sign changes of Hecke eigenvalues of newforms J. Austral. Math. Soc. 85 87-94
[5]  
Kohnen W(2009)The average behaviour of Fourier coefficients of cusp forms over sparse sequences Proc. Amer. Math. Soc. 8 2557-2565
[6]  
Martin Y(1983)Oscillations of the Fourier coefficients of modular forms Math. Ann. 262 431-446
[7]  
Kohnen W(undefined)undefined undefined undefined undefined-undefined
[8]  
Lao H(undefined)undefined undefined undefined undefined-undefined
[9]  
Sankaranarayanan A(undefined)undefined undefined undefined undefined-undefined
[10]  
Ram Murty M(undefined)undefined undefined undefined undefined-undefined