On the “blue sky catastrophe” termination in the restricted four-body problem

被引:0
作者
Jaime Burgos-García
Joaquín Delgado
机构
[1] UAM–Iztapalapa,Departamento de Matemáticas
来源
Celestial Mechanics and Dynamical Astronomy | 2013年 / 117卷
关键词
Periodic orbits; Equilibrium points; Stability ; Normal form theory; Transverse intersections;
D O I
暂无
中图分类号
学科分类号
摘要
The restricted three-body problem (R3BP) possesses the property that some classes of doubly asymptotic (i.e., homoclinic or heteroclinic) orbits are limit members of families of periodic orbits, this phenomenon has been known as the “blue sky catastrophe” termination principle. A similar case occurs in the restricted four body problem for the collinear equilibrium point L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document}. In the restricted four body problem with primaries in a triangle relative equilibrium, we show that the same phenomenon observed in the R3BP occurs. We prove that there exists a critical value of the mass parameter μb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{b}$$\end{document} such that for μ=μb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu =\mu _{b}$$\end{document} a Hamiltonian Hopf bifurcation takes place. Moreover we show that for μ>μb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu >\mu _{b}$$\end{document} the stable and unstable manifolds of L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{2}$$\end{document} intersect transversally and the spectrum corresponds to a complex saddle. This proves that Henrard’s theorem applies at least for μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} close to μb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{b}$$\end{document}. In particular there exists a family of periodic orbits having the homoclinic orbit as a limit.
引用
收藏
页码:113 / 136
页数:23
相关论文
共 45 条
[1]  
Abraham RH(1985)Catastrophes, intermittency, and noise, in chaos, fractals, and dynamics Lect. Notes Pure App. Math. 98 3-22
[2]  
Baltagiannis AN(2011)Families of periodic orbits in the restricted four-body problem Astrophys. Space Sci. 336 357-367
[3]  
Papadakis KE(2011)Equilibrium points and their stability in the restricted four-body problem Int. J. Bifurc. Chaos. 21 2179-2193
[4]  
Baltagiannis AN(1999)Shooting methods and topological transversality Proc. R. Soc. Edinb. Sec. A 129 1137-1155
[5]  
Papadakis KE(1974)Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues Celest. Mech. 8 435-443
[6]  
Buffoni B(2012)Regularization in the restricted four body problem Aportaciones Matemáticas. Memorias SMM. 45 3-15
[7]  
Burgoyne N.(2012)Boundary-value problem formulations for computing invariant manifolds and connecting orbits in the circular restricted three body problem Celest. Mech. Dyn. Astron. 114 77-106
[8]  
Cushman R.(2003)Central configurations of the symmetric restricted four-body problem Celest. Mech. 87 371-381
[9]  
Burgos J(1969)Canonical transformations depending on a small parameter Celest. Mech. 1 12-30
[10]  
Calleja RC(1976)Blue sky catastrophes in reversible and Hamiltonian systems J. Diff. Equ. 21 431-438