On the maximal conjugate of a totally real algebraic integer

被引:0
作者
Dubickas A. [1 ]
机构
[1] Vilnius University, 2006 Vilnius
关键词
Unit Circle; Algebraic Number; Minimal Polynomial; Real Interval; Algebraic Integer;
D O I
10.1007/BF02465435
中图分类号
学科分类号
摘要
Let α be an algebraic integer of degree d whose d conjugates are all real. We give a lower bound for the absolute value of conjugates of α in terms of d and of the number of conjugates outside the interval [-2: 2]. Combining this with a lower bound for Mahler's measure of a polynomial, we obtain a lower bound for the maximal conjugate of a totally real algebraic integer. © 1997 Plenum Publishing Corporation.
引用
收藏
页码:13 / 19
页数:6
相关论文
共 8 条
  • [1] Dubickas A., On algebraic numbers of small measure, Lith. Math. J., 35, pp. 421-431, (1995)
  • [2] Ennola V., Conjugate algebraic integers in an interval, Proc. Amer. Math. Soc., 53, pp. 259-261, (1975)
  • [3] Lehmer D.H., Factorization of certain cyclotomic functions, Ann. of Math., 34, pp. 461-479, (1933)
  • [4] Louboutin R., Sur le mesure de Mahler d'un nombre algébrique, CR Acad. Sci. Paris, 296, pp. 707-708, (1983)
  • [5] Robinson R.M., Intervals containing infinitely many sets of conjugate algebraic integers, Studies in Mathematical Analysis and Related Topics, pp. 305-315, (1962)
  • [6] Schinzel A., Zassenhaus H., A refinement of two theorems of Kronecker, Michigan Math. J., 12, pp. 81-85, (1965)
  • [7] Schur I., Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeitsch., 1, pp. 377-402, (1918)
  • [8] Zaimi T., Minoration du diamètre d'un entier algébrique totalement réel, CR Acad. Sci. Paris, 319, pp. 417-419, (1994)