Curvature identities for normal manifolds of killing type

被引:0
作者
E. S. Volkova
机构
[1] Moscow State Pedagogical University,
来源
Mathematical Notes | 1997年 / 62卷
关键词
almost contact metric manifold; normal manifold of Killing type; almost Hermitian manifold; Riemannian connection; fundamental form; curvature; CNK-structure;
D O I
暂无
中图分类号
学科分类号
摘要
We present two curvature identities and study the corresponding classesR1 andR2 of normal manifolds of Killing type.
引用
收藏
页码:296 / 305
页数:9
相关论文
共 15 条
[1]  
Sasaki S.(1964)On differentiable manifolds with contact metric structures J. Math. Soc. Japan 14 249-271
[2]  
Hatakeyma J.(1976)Anti-invariant submanifolds of a Sasakian space form Kodai Math. J. 2 171-186
[3]  
Ishihara I.(1971)Quasi-Sasakian structures of rank 2 J. Differential Geom. 5 317-324
[4]  
Tanno S.(1987)+1 Classical Quantum Gravity 4 1317-1325
[5]  
Ianus S.(1976)Kaluza-Klein theory with scalar fields on generalized Hopf manifolds Tôhoku Math. J. 28 601-612
[6]  
Visinescu M.(1969)Curvature identities for Hermitian and almost Hermitian manifolds Pacific J. Math. 31 373-382
[7]  
Gray A.(1983)Integrability of almost cosymplectic structures Izv. Akad. Nauk SSSR Ser. Mat. [Math. USSR-Izv.] 48 711-734
[8]  
Goldberg S.(1991)The axiom of Φ-holomorphic planes in contact metric geometry Mat. Sb. [Math. USSR-Sb.] 182 354-363
[9]  
Yano K.(1992)Locally conformal Kähler manifolds of constant sectional curvature Mat. Zametki 51 57-66
[10]  
Kirichenko V. F.(1976)Conformal flat locally conformal Kähler manifolds Israel J. Math. 24 338-351