On the asymptotics of coefficients of Rankin–Selberg L-functions

被引:0
作者
H. Lao
H. Zhu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2023年 / 170卷
关键词
Rankin–Selberg ; -function; Sato–Tate conjecture; holomorphic cusp form; omega theorem; Maass cusp form; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{Z})$$\end{document}. We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for ∑n≤xλsymif×symjg(n),∑n≤xλf(ni)λg(nj),∑n≤x|λsymif×symjg(n)|,∑n≤x|λf(ni)λg(nj)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\ \sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$\end{document} and ∑n≤xmax{|λsymif×symjg(n)|2φ,|λsymif×symjg(n+h)|2φ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$\end{document} where φ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi>0$$\end{document} and h is a fixed positive integer.
引用
收藏
页码:524 / 550
页数:26
相关论文
共 50 条
  • [31] Alternating L-functions of finite digraphs☆
    Wu, Yongjiang
    Feng, Lihua
    Liu, Weijun
    [J]. DISCRETE APPLIED MATHEMATICS, 2025, 370 : 34 - 49
  • [32] Values of twisted Artin L-functions
    Kenneth Ward
    [J]. Archiv der Mathematik, 2014, 103 : 285 - 290
  • [33] On higher moments of Dirichlet coefficients attached to symmetric square L-functions over certain sparse sequence
    Guodong Hua
    Bin Chen
    Lijing Pan
    Xiaofang Chen
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4195 - 4208
  • [34] On M-functions for the value-distributions of L-functions
    Masahiro Mine
    [J]. Lithuanian Mathematical Journal, 2019, 59 : 96 - 110
  • [35] On discrete mean values of Dirichlet L-functions
    Ertan Elma
    [J]. Czechoslovak Mathematical Journal, 2021, 71 : 1035 - 1048
  • [36] On the central value of symmetric square L-functions
    Valentin Blomer
    [J]. Mathematische Zeitschrift, 2008, 260
  • [37] Vanishing of quartic and sextic twists of L-functions
    Jennifer Berg
    Nathan C. Ryan
    Matthew P. Young
    [J]. Research in Number Theory, 2024, 10
  • [38] Discrete universality of the L-functions of elliptic curves
    V. Garbaliauskienė
    J. Genys
    A. Laurinčikas
    [J]. Siberian Mathematical Journal, 2008, 49
  • [39] Joint discrete universality of Dirichlet L-functions
    Artūras Dubickas
    Antanas Laurinčikas
    [J]. Archiv der Mathematik, 2015, 104 : 25 - 35
  • [40] Functoriality of automorphic L-functions through their zeros
    JianYa Liu
    YangBo Ye
    [J]. Science in China Series A: Mathematics, 2009, 52 : 1 - 16