On the asymptotics of coefficients of Rankin–Selberg L-functions

被引:0
作者
H. Lao
H. Zhu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2023年 / 170卷
关键词
Rankin–Selberg ; -function; Sato–Tate conjecture; holomorphic cusp form; omega theorem; Maass cusp form; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{Z})$$\end{document}. We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for ∑n≤xλsymif×symjg(n),∑n≤xλf(ni)λg(nj),∑n≤x|λsymif×symjg(n)|,∑n≤x|λf(ni)λg(nj)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\ \sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$\end{document} and ∑n≤xmax{|λsymif×symjg(n)|2φ,|λsymif×symjg(n+h)|2φ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$\end{document} where φ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi>0$$\end{document} and h is a fixed positive integer.
引用
收藏
页码:524 / 550
页数:26
相关论文
共 50 条
  • [21] Oscillations of coefficients of symmetric square L-functions over primes
    Fei Hou
    Frontiers of Mathematics in China, 2015, 10 : 1325 - 1341
  • [22] Mean Square Estimates for Coefficients of Symmetric Power L-Functions
    Huixue Lao
    Acta Applicandae Mathematicae, 2010, 110 : 1127 - 1136
  • [23] Ω-RESULT ON COEFFICIENTS OF AUTOMORPHIC L-FUNCTIONS OVER SPARSE SEQUENCES
    Lao, Huixue
    Wei, Hongbin
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (05) : 945 - 954
  • [24] On the Rankin–Selberg L-function related to the Godement–Jacquet L-function
    A. Kaur
    A. Sankaranarayanan
    Acta Mathematica Hungarica, 2023, 169 : 88 - 107
  • [25] Modular-type relations associated to the Rankin–Selberg L-function
    Kalyan Chakraborty
    Shigeru Kanemitsu
    Bibekananda Maji
    The Ramanujan Journal, 2017, 42 : 285 - 299
  • [26] Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
    A. Sharma
    A. Sankaranarayanan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1399 - 1416
  • [27] The sphere problem and the L-functions
    Fernando Chamizo
    Elena Cristóbal
    Acta Mathematica Hungarica, 2012, 135 : 97 - 115
  • [28] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Anubhav Sharma
    Ayyadurai Sankaranarayanan
    Research in Number Theory, 2022, 8
  • [29] Solvable base change and Rankin-Selberg convolutions
    Tim Gillespie
    Science China Mathematics, 2017, 60 : 99 - 112
  • [30] Correlation of zeros of automorphic L-functions
    Liu JianYa
    YangBo Ye
    Science in China Series A: Mathematics, 2008, 51 : 1147 - 1166