On the asymptotics of coefficients of Rankin–Selberg L-functions

被引:0
|
作者
H. Lao
H. Zhu
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Acta Mathematica Hungarica | 2023年 / 170卷
关键词
Rankin–Selberg ; -function; Sato–Tate conjecture; holomorphic cusp form; omega theorem; Maass cusp form; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let f and g be two different holomorphic cusp froms or Maass cusp forms for the full modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SL(2,\mathbb{Z})$$\end{document}. We are interested in coefficients of Rankin–Selberg L-functions, and establish some bounds for ∑n≤xλsymif×symjg(n),∑n≤xλf(ni)λg(nj),∑n≤x|λsymif×symjg(n)|,∑n≤x|λf(ni)λg(nj)|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}\sum_{n\leq x} \lambda_{{\rm sym}^if\times {\rm sym}^jg}(n),\quad \sum_{n\leq x}\lambda_f(n^i)\lambda_g(n^j), \\ \sum_{n\leq x} |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|, \quad \sum_{n\leq x}|\lambda_f(n^i)\lambda_g(n^j)|, \end{aligned}$$\end{document} and ∑n≤xmax{|λsymif×symjg(n)|2φ,|λsymif×symjg(n+h)|2φ},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{n\leq x} \max \bigl\{|\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n)|^{2\varphi}, |\lambda_{{\rm sym}^if\times {\rm sym}^jg}(n+h)|^{2\varphi} \bigr\}, $$\end{document} where φ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi>0$$\end{document} and h is a fixed positive integer.
引用
收藏
页码:524 / 550
页数:26
相关论文
共 50 条
  • [11] Estimates for coefficients of certain L-functions
    Guangshi Lü
    Monatshefte für Mathematik, 2016, 181 : 657 - 674
  • [12] Stieltjes constants of L-functions in the extended Selberg class
    Shōta Inoue
    Sumaia Saad Eddin
    Ade Irma Suriajaya
    The Ramanujan Journal, 2021, 55 : 609 - 621
  • [13] EXTREME VALUES OF L-FUNCTIONS FROM THE SELBERG CLASS
    Pankowski, Lukasz
    Steuding, Joern
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (05) : 1113 - 1124
  • [14] A proof of Selberg's orthogonality for automorphic L-functions
    Jianya Liu
    Yonghui Wang
    Yangbo Ye
    manuscripta mathematica, 2005, 118 : 135 - 149
  • [15] Estimates for coefficients of certain L-functions
    Lu, Guangshi
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03): : 657 - 674
  • [16] Estimates for the Fourier coefficients of symmetric square L-functions
    Hengcai Tang
    Archiv der Mathematik, 2013, 100 : 123 - 130
  • [17] Mean value estimates of the coefficients of product L-functions
    H.-F. Liu
    Acta Mathematica Hungarica, 2018, 156 : 102 - 111
  • [18] Averages of coefficients of a class of degree 3 L-functions
    Bingrong Huang
    Yongxiao Lin
    Zhiwei Wang
    The Ramanujan Journal, 2022, 57 : 79 - 91
  • [19] On the Riesz means of coefficients of mth symmetric power L-functions
    H. Wang
    Lithuanian Mathematical Journal, 2010, 50 : 474 - 488
  • [20] Uniform estimates for sums of coefficients of symmetric power L-functions
    Guohua Chen
    Xiaoguang He
    Lithuanian Mathematical Journal, 2022, 62 : 421 - 434