A Strongly Nonlinear Elliptic Problem with Generalized Growth in Musielak Spaces

被引:0
作者
Mohamed Bourahma
Abdelmoujib Benkirane
Jaouad Bennouna
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA, Department of Mathematics, Faculty of Sciences Dhar el Mahraz
来源
Differential Equations and Dynamical Systems | 2024年 / 32卷
关键词
Elliptic problems; Musielak–Orlicz–Sobolev spaces; Renormalized solutions; Generalized growth; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we prove an existence theorem of renormalized solutions for nonlinear elliptic problem of the type -divA(x,u,∇u)-divΦ(x,u)+H(x,u,∇u)=finΩ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\mathop {\mathrm{div}}\>{\mathcal {A}}(x,u,\nabla u)-\mathop {\mathrm{div}}\varPhi (x,u)+{\mathcal {H}}(x,u,\nabla u)= f \quad \hbox {in }{\varOmega }, \end{aligned}$$\end{document}where the first lower-order term Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} satisfies only a generalized natural growth condition without any supplementary assumptions. The approach does not require any particular type of growth condition on Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document}.
引用
收藏
页码:51 / 85
页数:34
相关论文
共 72 条
  • [11] Youssfi A(2013)Existence results for nonlinear elliptic equations with degenerate coercivity Bull Belg Math Soc Simon Stevin 10 371-381
  • [12] Ait Khellou M(2012)A priori estimates for a class of non uniformly elliptic equations Thai. J. Math. 21 787-811
  • [13] Benkirane A(2014)Almost everywhere convergence of gradients of solutions to elliptic equations in Orlicz spaces and application Bull. Belg. Math. Soc. Simon Stevin 20 57-75
  • [14] Ait Khellou M(2013)An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces Bull. Belg. Math. Soc. Simon Stevin 46 51-81
  • [15] Benkirane A(1998)Some approximation properties in Musielak-Orlicz-Sobolev spaces Atti Semin. Mat. Fis. Univ. Modena 106 215-237
  • [16] Ait Khellou M(1993)Variational inequalities in Musielak-Orlicz-Sobolev spaces J. Differ. Equ. 66 1383-1406
  • [17] Benkirane A(2019)An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces J. Rend. Circ. Mat. Palermo II. Ser. 28 741-808
  • [18] Ait Khellou M(2006)Existence and regularity results for some elliptic equations with degenerate coercivity SIAM J. Appl. Math. 130 285-366
  • [19] Benkirane A(1999)Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms Ann. Scuola Norm. Sup. Pisa CI Sci. 184 161-184
  • [20] Douiri SM(1989)Existence of renormalized solutions for some nonlinear elliptic equations in Orlicz spaces Ann. Math. 45 455-462