Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime

被引:0
|
作者
Weizhu Bao
Yongyong Cai
Xiaowei Jia
Qinglin Tang
机构
[1] National University of Singapore,Department of Mathematics
[2] Beijing Computational Science Research Center,Department of Mathematics
[3] Purdue University,Institut Elie Cartan de Lorraine, Inria Nancy
[4] Université de Lorraine,Grand Est
来源
Journal of Scientific Computing | 2017年 / 71卷
关键词
Dirac equation; Nonrelativistic limit regime; Finite difference time domain method; Symmetric exponential wave integrator; Time splitting; Spectral method; -Scalability;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze rigorously error estimates and compare numerically spatial/temporal resolution of various numerical methods for the discretization of the Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document} which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength O(ε2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\varepsilon ^2)$$\end{document} and O(1) in time and space, respectively. We begin with several frequently used finite difference time domain (FDTD) methods and obtain rigorously their error estimates in the nonrelativistic limit regime by paying particular attention to how error bounds depend explicitly on mesh size h and time step τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} as well as the small parameter ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}. Based on the error bounds, in order to obtain ‘correct’ numerical solutions in the nonrelativistic limit regime, i.e. 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document}, the FDTD methods share the same ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-scalability on time step and mesh size as: τ=O(ε3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =O(\varepsilon ^3)$$\end{document} and h=O(ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=O(\sqrt{\varepsilon })$$\end{document}. Then we propose and analyze two numerical methods for the discretization of the Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the symmetric exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-scalability is improved to τ=O(ε2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =O(\varepsilon ^2)$$\end{document} and h=O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h=O(1)$$\end{document} when 0<ε≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\varepsilon \ll 1$$\end{document}. Extensive numerical results are reported to support our error estimates.
引用
收藏
页码:1094 / 1134
页数:40
相关论文
共 50 条
  • [1] Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime
    Bao, Weizhu
    Cai, Yongyong
    Jia, Xiaowei
    Tang, Qinglin
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 1094 - 1134
  • [2] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    BAO WeiZhu
    CAI YongYong
    JIA XiaoWei
    YIN Jia
    Science China(Mathematics), 2016, 59 (08) : 1461 - 1494
  • [3] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    Bao WeiZhu
    Cai YongYong
    Jia XiaoWei
    Yin Jia
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (08) : 1461 - 1494
  • [4] Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime
    WeiZhu Bao
    YongYong Cai
    XiaoWei Jia
    Jia Yin
    Science China Mathematics, 2016, 59 : 1461 - 1494
  • [5] Numerical Methods for the Nonlinear Dirac Equation in the Massless Nonrelativistic Regime
    He, Ying
    Wang, Yan
    Yang, Jerry Zhijian
    Yin, Hongshuang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (01) : 79 - 103
  • [6] Analysis and comparison of numerical methods for the Klein–Gordon equation in the nonrelativistic limit regime
    Weizhu Bao
    Xuanchun Dong
    Numerische Mathematik, 2012, 120 : 189 - 229
  • [7] Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime
    Bao, Weizhu
    Dong, Xuanchun
    NUMERISCHE MATHEMATIK, 2012, 120 (02) : 189 - 229
  • [8] Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime
    Bao, Weizhu
    Zhao, Xiaofei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [9] UNIFORMLY ACCURATE NUMERICAL SCHEMES FOR THE NONLINEAR DIRAC EQUATION IN THE NONRELATIVISTIC LIMIT REGIME
    Lemou, Mohammed
    Mehats, Florian
    Zhao, Xiaofei
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (04) : 1107 - 1128
  • [10] On numerical methods for the semi-nonrelativistic limit system of the nonlinear Dirac equation
    Tobias Jahnke
    Michael Kirn
    BIT Numerical Mathematics, 2023, 63