A new analytical method to the conformable chiral nonlinear Schrödinger equation in the quantum Hall effect

被引:0
作者
Gülnur Yel
Hasan Bulut
Esin İlhan
机构
[1] Final International University,Faculty of Education
[2] Firat University,Department of Mathematics
[3] Ahi Evran University,Faculty of Engineering and Architecture, Kirşehir
来源
Pramana | 2022年 / 96卷
关键词
Rational sine-Gordon expansion method; conformable derivative; chiral nonlinear Schrödinger equation; quantum Hall effect.; 02.30 Jr; 73.43.-f; 05.45.Yv;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, our goal is to find more general exact travelling wave solutions of the (1+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}1)- and (2+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document}1)-dimensional nonlinear chiral Schrödinger equation with conformable derivative by using a newly developed analytical method. The governing model has a very important role in quantum mechanics, especially in the field of quantum Hall effect where chiral excitations are present. In two-dimensional electron systems, subjected to strong magnetic fields and low temperatures, the quantum Hall effect can be observed. By using the method, called the rational sine-Gordon expansion method which is a generalised form of the sine-Gordon expansion method, we found complex dark and bright solitary wave solutions. These solutions have important applications in the quantum Hall effect.
引用
收藏
相关论文
共 66 条
  • [1] Kumar S(2021)undefined Pramana – J. Phys. 95 1-undefined
  • [2] Kumar D(2020)undefined Pramana – J. Phys. 94 1-undefined
  • [3] Kumar S(2002)undefined Phys. Lett. A 294 26-undefined
  • [4] Kumar M(2019)undefined Mod. Phys. Lett. B 33 1950363-undefined
  • [5] Kumar D(1971)undefined Phys. Rev. Lett. 27 1192-undefined
  • [6] Fan E(2021)undefined Pramana – J. Phys. 95 1-undefined
  • [7] Lu D(1996)undefined Phys. Lett. A 224 77-undefined
  • [8] Seadawy AR(2020)undefined Aims Math. 5 507-undefined
  • [9] Ahmed I(2020)undefined Appl. Math. Nonlinear Sci. 5 309-undefined
  • [10] Hirota R(2021)undefined Pramana – Phys. 95 1-undefined