Successful couplings for a class of stochastic differential equations driven by Lévy processes

被引:0
作者
HuoNan Lin
Jian Wang
机构
[1] Fujian Normal University,School of Mathematics and Computer Science
来源
Science China Mathematics | 2012年 / 55卷
关键词
stochastic differential equations; Lévy processes; coupling property; coupling operator; Liouville theorem; 60J25; 60J75;
D O I
暂无
中图分类号
学科分类号
摘要
By constructing proper coupling operators for the integro-differential type Markov generator, we establish the existence of a successful coupling for a class of stochastic differential equations driven by Lévy processes. Our result implies a new Liouville theorem for space-time bounded harmonic functions with respect to the underlying Markov semigroups, and it is sharp for Ornstein-Uhlenbeck processes driven by α-stable Lévy processes.
引用
收藏
页码:1735 / 1748
页数:13
相关论文
共 35 条
  • [1] Barlow M. T.(2000)The Liouville property and a conjecture of De Giorgi Comm Pure Appl Math 53 1007-1038
  • [2] Bass R. F.(2011)Constructions of coupling processes for Lévy processes Stoch Proc Appl 121 1201-1216
  • [3] Gui C.(1989)Coupling methods for multidimensional diffusion processes Ann Probab 17 151-177
  • [4] Böttcher B.(1995)Coupling and harmonic functions in the case of continuous time Markov processes Stoch Proc Appl 60 261-286
  • [5] Schilling R. L.(2000)A condition for the equivalence of coupling and shift-coupling Ann Probab 28 1666-1679
  • [6] Wang J.(2005)Function spaces as Dirichlet spaces—about a paper by Maz’ya and Nagel Z Anal Anwendungen 24 3-28
  • [7] Chen M. F.(2008)A note on Trans Amer Math Soc 360 925-938
  • [8] Li S. F.(2009)-estimates for stable intergrals with drift Stoch Proc Appl 119 602-632
  • [9] Cranston M.(1976)Exponential ergodicity of the solutions to SDE’s with a jump noise Ann Inst Henri Poincaré 12 43-103
  • [10] Greven A.(2007)Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différential Stoch Proc Appl 117 35-56