Modeling the oxidative coupling of methane using artificial neural network and optimizing of its operational conditions using genetic algorithm

被引:0
|
作者
Mohammad Reza Ehsani
Hamed Bateni
Ghazal Razi Parchikolaei
机构
[1] Isfahan University of Technology,Department of Chemical Engineering
来源
关键词
Oxidative Coupling of Methane (OCM); Mn/Na; WO; /SiO; Catalyst; ANN; Optimization; Genetic Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of some operating conditions such as temperature, gas hourly space velocity (GHSV), CH4/O2 ratio and diluents gas (mol% N2) on ethylene production by oxidative coupling of methane (OCM) in a fixed bed reactor at atmospheric pressure was studied over Mn/Na2WO4/SiO2 catalyst. Based on the properties of neural networks, an artificial neural network was used for model developing from experimental data. To prevent network complexity and effective data input to the network, principal component analysis method was used and the number of output parameters was reduced from 4 to 2. A feed-forward back-propagation network was used for simulating the relations between process operating conditions and those aspects of catalytic performance including conversion of methane, C2 products selectivity, C2 yielding and C2H4/C2H6 ratio. Levenberg-Marquardt method is presented to train the network. For the first output, an optimum network with 4-9-1 topology and for the second output, an optimum network with 4-6-1 topology was prepared. After simulating the process as well as using ANNs, the operating conditions were optimized and a genetic algorithm based on maximum yield of C2 was used. The average error in comparing the experimental and simulated values for methane conversion, C2 products selectivity, yield of C2 and C2H4/C2H6 ratio, was estimated as 2.73%, 10.66%, 5.48% and 10.28%, respectively.
引用
收藏
页码:855 / 861
页数:6
相关论文
共 50 条
  • [21] Modelling and optimizing an electrochemical oxidation process using artificial neural network, genetic algorithm and particle swarm optimization
    Liu, Banghai
    Jin, Chunji
    Wan, Jiteng
    Li, Pengfang
    Yan, Huanxi
    JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, 2018, 83 (03) : 379 - 390
  • [22] Modeling of methane oxidation in landfill cover soil using an artificial neural network
    Abushammala, Mohammed F. M.
    Basri, Noor Ezlin Ahmad
    Elfithri, Rahmah
    Younes, Mohammad K.
    Irwan, Dani
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2014, 64 (02) : 150 - 159
  • [23] Forecasting Portfolio Optimization using Artificial Neural Network and Genetic Algorithm
    Solin, Mohammad Maholi
    Alamsyah, Andry
    Rikumahu, Brady
    Saputra, Muhammad Apriandito Arya
    2019 7TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY (ICOICT), 2019, : 496 - 502
  • [24] Optimizing Architectural Properties of Artificial Neural Network using Proposed Artificial Bee Colony Algorithm
    Nimbark, Hiteshkumar
    Sukhadia, Rinkal
    Kotak, P. P.
    2014 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2014, : 1285 - 1289
  • [25] Optimized Artificial Neural Network for Biosignals Classification Using Genetic Algorithm
    Lima, Aron A. M.
    de Barros, Fabio K. H.
    Yoshizumi, Victor H.
    Spatti, Danilo H.
    Dajer, Maria E.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (03) : 371 - 379
  • [26] Multicomponent image segmentation using a genetic algorithm and artificial neural network
    Awad, Mohamad
    Chehdi, Kacem
    Nasri, Ahmad
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (04) : 571 - 575
  • [27] Sound Masking Using Genetic Algorithm & Artificial Neural Network (SMUGAANN)
    Culibrina, Francisco B.
    Dadios, Elmer P.
    2014 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2014,
  • [28] Optimized Artificial Neural Network for Biosignals Classification Using Genetic Algorithm
    Aron A. M. Lima
    Fábio K. H. de Barros
    Victor H. Yoshizumi
    Danilo H. Spatti
    Maria E. Dajer
    Journal of Control, Automation and Electrical Systems, 2019, 30 : 371 - 379
  • [29] Prediction of bioconcentration factor using genetic algorithm and artificial neural network
    Fatemi, MH
    Jalali-Heravi, M
    Konuze, E
    ANALYTICA CHIMICA ACTA, 2003, 486 (01) : 101 - 108
  • [30] Hydro plant dispatch using artificial neural network and genetic algorithm
    Chen, Po-Hung
    Advances in Neural Networks - ISNN 2007, Pt 3, Proceedings, 2007, 4493 : 1120 - 1129