Toeplitz Operators with Homogeneous Symbols on Polyharmonic Spaces

被引:0
作者
Maribel Loaiza
Isidro Morales-García
Josué Ramírez-Ortega
机构
[1] CINVESTAV-IPN,Departamento de Matemáticas
[2] Universidad Veracruzana,Facultad de Matemáticas
来源
Complex Analysis and Operator Theory | 2021年 / 15卷
关键词
Harmonic function; Bergman Spaces; Toeplitz operator; -algebras of Toeplitz operators; 31A05; 32A36; 47B35; 47L80;
D O I
暂无
中图分类号
学科分类号
摘要
We describe C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebras generated by Toeplitz operators with homogeneous symbols acting on polyharmonic Bergman spaces of the upper half-plane Π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi $$\end{document}. The symbols considered here have finite limits at the points 0 and π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}. Under these conditions on the family of symbols, a Toeplitz operator acting on the true polyharmonic space H(n)2(Π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{(n)}^{2}(\Pi )$$\end{document} is unitarily equivalent to a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} matrix-valued function defined on R¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{{\mathbb {R}}}$$\end{document}. The C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra generated by these matrix-valued functions turns out to be isomorphic to the algebra C:=f=(fij)∈M2(C(R¯)):f(±∞)is diagonal,f11(±∞)=f22(∓∞).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathfrak {C}} := \left\{ f=(f_{ij})\in M_{2}(C(\overline{{\mathbb {R}}})) : f(\pm \infty ) \text { is diagonal}, f_{11}(\pm \infty )=f_{22}(\mp \infty ) \right\} . \end{aligned}$$\end{document}Besides, we prove that the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra generated by Toeplitz operators with homogeneous symbols, acting on the polyharmonic Bergman space Hn2(Π)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}_{n}^{2}(\Pi )$$\end{document}, is isomorphic to the C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-subalgebra of M2n(C(R¯))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{2n}(C(\overline{{\mathbb {R}}}))$$\end{document} consisting of all matrix-valued functions f=(fij)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=(f_{ij})$$\end{document} such that f(-∞)=λ1I0I0Iλ2I,f(+∞)=λ2I0I0Iλ1I,λ1,λ2∈C,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f(-\infty )=\left( \begin{array}{cc} \lambda _1 I &{} 0I \\ 0I &{} \lambda _2 I \end{array} \right) , \quad f(+\infty )=\left( \begin{array}{cc} \lambda _2 I &{} 0I \\ 0I &{} \lambda _1 I \end{array} \right) , \ \lambda _1,\lambda _2 \in {\mathbb {C}}, \end{aligned}$$\end{document}where I is the n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} identity matrix.
引用
收藏
相关论文
共 26 条
[1]  
Choe BR(2009)Berezin transform and Toeplitz operators on harmonic Bergman spaces J. Funct. Anal. 257 3135-3166
[2]  
Nam K(2012)Toeplitz operators on Bergman spaces of polyanalytic functions Bull. Lond. Math. Soc. 44 961-973
[3]  
Čučković Ž(2006)Commutative J. Funct. Anal. 234 1-44
[4]  
Lee T(2002)-algebras of Toeplitz operators and quantization on the unit disk J. Math. Anal. Appl. 276 213-230
[5]  
Grudsky S(2011)Toeplitz algebra and Hankel algebra on the harmonic Bergman space Integr. Equ. Oper. Theory 71 357-388
[6]  
Quiroga-Barranco R(2014)Wavelets from Laguerre polynomials and Toeplitz-type operators Oper. Matrices 8 1107-1129
[7]  
Vasilevski NL(1951)Toeplitz operators on poly-analytic spaces via time-scale analysis Trans. Am. Math. Soc. 70 219-255
[8]  
Guo K(2008)The structure of certain operator algebras Oper. Theory Adv. Appl. 181 263-282
[9]  
Zheng D(2001)Poly-Bergman projections and orthogonal decompositions of Kangweon-Kyungki Math. J. 9 45-52
[10]  
Hutník O(2005)-spaces over bounded domains Integr. Equ. Oper. Theory 5 141-153