A Frequency-Domain Approach to Optimal Fractional-Order Damping

被引:1
|
作者
Tom T. Hartley
Carl F. Lorenzo
机构
[1] The University of Akron,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2004年 / 38卷
关键词
fractional-order resonances; fractional-order systems; optimal damping;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will consider the single term optimal fractional-order damper for an otherwise undamped oscillator. First, we will find the single term damper that minimizes the time domain integral of the squared step error (2-norm) and the integral of the time-weighted squared error (Hilbert–Schmidt–Hankel norm). Next we will consider a more intuitive frequency domain approach that insures the maximally flat magnitude response. Time and frequency domain plots are given for comparison with the integer-order solutions. Further improvements in performance are shown to be possible using multiple active fractional-order dampers.
引用
收藏
页码:69 / 84
页数:15
相关论文
共 50 条
  • [41] Optimal fractional-order PID controller based on fractional-order actor-critic algorithm
    Raafat Shalaby
    Mohammad El-Hossainy
    Belal Abo-Zalam
    Tarek A. Mahmoud
    Neural Computing and Applications, 2023, 35 : 2347 - 2380
  • [42] Optimal Control for Fractional-Order Nonlinear Systems Using Fractional-Order Online Policy Iteration
    Kong, Jie
    Zhao, Bo
    Chinese Control Conference, CCC, 2024, : 2558 - 2563
  • [43] A fractional-order active damping control approach for piezo-actuated nanopositioning stages
    Li, Lin-Lin
    Gu, Guo-Ying
    Zhu, Li-Min
    2016 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS), 2016,
  • [44] FLRNN-FGA: Fractional-Order Lipschitz Recurrent Neural Network with Frequency-Domain Gated Attention Mechanism for Time Series Forecasting
    Zhao, Chunna
    Ye, Junjie
    Zhu, Zelong
    Huang, Yaqun
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [45] DESIGN OF REDUCED-ORDER OPTIMAL ESTIMATORS DIRECTLY IN THE FREQUENCY-DOMAIN - COMMENTS
    WURMTHALER, C
    HIPPE, P
    INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (04) : 1017 - 1018
  • [46] An Experimental Tuning Approach of Fractional Order Controllers in the Frequency Domain
    Birs, Isabela
    Folea, Silviu
    Prodan, Ovidiu
    Dulf, Eva
    Muresan, Cristina
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [47] Optimal Tuning of Fractional-Order PID Controller
    Arun, M. K.
    Biju, U.
    Rajagopal, Neeraj Nair
    Bagyaveereswaran, V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING SYSTEMS, ICSCS 2015, VOL 1, 2016, 397 : 401 - 408
  • [48] Optimal synergetic control for fractional-order systems
    Djennoune, Said
    Bettayeb, Maamar
    AUTOMATICA, 2013, 49 (07) : 2243 - 2249
  • [49] Design of optimal fractional-order PID controllers
    Leu, JF
    Tsay, SY
    Hwang, C
    JOURNAL OF THE CHINESE INSTITUTE OF CHEMICAL ENGINEERS, 2002, 33 (02): : 193 - 202
  • [50] A Novel Indirect Approach for Modelling a Class of Fractional-Order System in Complex Domain
    Sungoh, Wandarisa
    Swarnakar, Jaydeep
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (10) : 6155 - 6186