A Frequency-Domain Approach to Optimal Fractional-Order Damping

被引:1
|
作者
Tom T. Hartley
Carl F. Lorenzo
机构
[1] The University of Akron,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2004年 / 38卷
关键词
fractional-order resonances; fractional-order systems; optimal damping;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will consider the single term optimal fractional-order damper for an otherwise undamped oscillator. First, we will find the single term damper that minimizes the time domain integral of the squared step error (2-norm) and the integral of the time-weighted squared error (Hilbert–Schmidt–Hankel norm). Next we will consider a more intuitive frequency domain approach that insures the maximally flat magnitude response. Time and frequency domain plots are given for comparison with the integer-order solutions. Further improvements in performance are shown to be possible using multiple active fractional-order dampers.
引用
收藏
页码:69 / 84
页数:15
相关论文
共 50 条
  • [21] Frequency-Domain Tuning of a Robust Optimal 2-DOF Fractional Order PID Controller for a Maglev System
    Dey, Soham
    Banerjee, Subrata
    Dey, Jayati
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (09) : 11348 - 11361
  • [22] Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods
    Xiao, Ke
    Zhou, Shangbo
    Zhang, Weiwei
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 1263 - 1267
  • [23] Numerical Solution for Fractional-order Differential Systems with Time Domain and Frequency Domain Methods
    Xiao, Ke
    Zhou, Shangbo
    Zhang, Weiwei
    2008 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS PROCEEDINGS, VOLS 1 AND 2: VOL 1: COMMUNICATION THEORY AND SYSTEM, 2008, : 742 - 746
  • [24] ROBUST TIME-OPTIMAL CONTROL - FREQUENCY-DOMAIN APPROACH
    SINGH, T
    VADALI, SR
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1994, 17 (02) : 346 - 353
  • [26] A physics-based fractional-order equivalent circuit model for time and frequency-domain applications in lithium-ion batteries
    Rodriguez-Iturriaga, Pablo
    Ansean, David
    Rodriguez-Bolivar, Salvador
    Gonzalez, Manuela
    Viera, Juan Carlos
    Lopez-Villanueva, Juan Antonio
    JOURNAL OF ENERGY STORAGE, 2023, 64
  • [27] Fractional-Order Optimal Control of Fractional-Order Linear Vibration Systems with Time Delay
    Balochian, Saeed
    Rajaee, Nahid
    INTERNATIONAL JOURNAL OF SYSTEM DYNAMICS APPLICATIONS, 2018, 7 (03) : 72 - 93
  • [28] Guaranteed frequency-domain identification of fractional order systems: application to a real system
    Amairi, Messaoud
    Aoun, Mohamed
    Najar, Slaheddine
    Abdelkrim, Mohamed Naceur
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2012, 17 (01) : 32 - 42
  • [29] An approach to solve fractional optimal control problems via fractional-order Boubaker wavelets
    Rabiei, Kobra
    Razzaghi, Mohsen
    JOURNAL OF VIBRATION AND CONTROL, 2023, 29 (7-8) : 1806 - 1819
  • [30] Optimal and accurate design of fractional-order digital differentiator - an evolutionary approach
    Mahata, Shibendu
    Saha, Suman Kumar
    Kar, Rajib
    Mandal, Durbadal
    IET SIGNAL PROCESSING, 2017, 11 (02) : 181 - 196