A Frequency-Domain Approach to Optimal Fractional-Order Damping

被引:1
|
作者
Tom T. Hartley
Carl F. Lorenzo
机构
[1] The University of Akron,Department of Electrical and Computer Engineering
来源
Nonlinear Dynamics | 2004年 / 38卷
关键词
fractional-order resonances; fractional-order systems; optimal damping;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will consider the single term optimal fractional-order damper for an otherwise undamped oscillator. First, we will find the single term damper that minimizes the time domain integral of the squared step error (2-norm) and the integral of the time-weighted squared error (Hilbert–Schmidt–Hankel norm). Next we will consider a more intuitive frequency domain approach that insures the maximally flat magnitude response. Time and frequency domain plots are given for comparison with the integer-order solutions. Further improvements in performance are shown to be possible using multiple active fractional-order dampers.
引用
收藏
页码:69 / 84
页数:15
相关论文
共 50 条
  • [1] A frequency-domain approach to optimal fractional-order damping
    Hartley, TT
    Lorenz, CF
    NONLINEAR DYNAMICS, 2004, 38 (1-4) : 69 - 84
  • [2] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168
  • [3] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Li, Xu
    Gao, Lifu
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2022, 20 (07) : 2159 - 2168
  • [4] Identification of the Fractional-Order Systems: A Frequency Domain Approach
    Dzielinski, Andrzej
    Sierociuk, Dominik
    Sarwas, Grzegorz
    Petras, Ivo
    Podlubny, Igor
    Skovranek, Tomas
    ACTA MONTANISTICA SLOVACA, 2011, 16 (01) : 26 - 33
  • [5] Principle and Application of Frequency-Domain Characteristic Analysis of Fractional-Order Memristor
    Yu, Bo
    Pu, Yifei
    He, Qiuyan
    Yuan, Xiao
    MICROMACHINES, 2022, 13 (09)
  • [6] Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems
    Tavazoei, M. S.
    Haeri, M.
    IET SIGNAL PROCESSING, 2007, 1 (04) : 171 - 181
  • [8] An Improved Frequency-domain Method for the Fractional Order PIADP Controller Optimal Design
    Zheng, Weijia
    Luo, Ying
    Chen, Yangquan
    Pi, Youguo
    Yu, Wei
    IFAC PAPERSONLINE, 2018, 51 (04): : 681 - 686
  • [9] Fractional-order PID controller design via optimal selection strategy of frequency domain specifications
    Yumuk, Erhan
    Guzelkaya, Mujde
    Eksin, Ibrahim
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (10) : 2239 - 2252
  • [10] Frequency domain stability criteria for fractional-order control systems
    汪纪锋
    Journal of Chongqing University, 2006, (01) : 30 - 35